
Report Title

A REPORT COMMISSIONED BY
FIS AND PREPARED BY:

Author Name

Subtitle

SMARTRAWL 5.0
Final Report

FIS045

A REPORT COMMISSIONED BY FIS
AND PREPARED BY:

Rosie Ashworth
Paul Fernandes

Dewei Yi
David Morrison

Shaun Fraser

1

F E B R U A R Y 2 0 2 5

2

Front cover. Images taken in November 2023 gate trials aboard the Atlantia II research vessel, off
the Shetland Islands.

3

Executive summary
Smartrawl 5.0 was a project funded by the Seafood Innovation Fund of the United Kingdom’s
Department for Environment, Food & Rural Affairs, to develop the Smartrawl system. Smartrawl is a
selective device retrofitted inside the net of a demersal trawl allowing for fish to be either caught or
released in-situ underwater in order to mitigate against discards and bycatch.

There were 7 milestones of Smartrawl 5.0:

1. The construction of the latch to control the rotation of the gate, allowing the system to catch and
release species.

2. The integration of an AI-capable Single Board Computer (SBC), the Nvidia Jetson Nano. This has
the AI algorithms incorporated and logic to communicate with the latch.

3. To further improve the initial artificial intelligence algorithm, through training of labelled images
from previous camera trials.

4. To conduct six days of sea trials in Shetland to test the gate rotation and latch functionality.

5. The completion of the final artificial intelligence algorithm, documented to successfully detect,
identify and size programmed species.

6 To conduct six days of sea trials in Shetland testing the fully integrated system (all three
components of Smartrawl).

7. To conduct two days of sea trials on a small offshore mixed demersal commercial trawler.

Milestone 1: Latch Construction for Gate Control

The first milestone focused on the development and construction of a latch mechanism designed
to control the rotation of the Smartrawl gate. This latch system was crucial for enabling the selective
catch-and-release functionality, allowing the gate to either retain target species or release non-
target species back into the marine environment. The design and engineering phase involved
ensuring the latch could engage and disengage reliably under real-world fishing conditions. After
several iterations the final latch was deigned, constructed and tested at sea. Video evidence was
obtained showing that this worked effectively.

Milestone 2: SBC Integration with the Smartrawl System

The second milestone aimed to integrate an AI-capable Single Board Computer (SBC)—the Nvidia
Jetson Nano—to process real-time data from the stereo camera. This SBC was programmed with
AI algorithms capable of identifying and sizing eight species of fish, making instant classification
decisions. Additionally, communication logic was developed to enable interaction between the AI
system and the latch mechanism, ensuring that the gate responded appropriately to classification
signals. This SBC also replaced the original computer which controlled the camera image
acquisition. The new computer and associated control boards were successfully integrated.

Milestone 3: AI Algorithm Enhancement

The third milestone focused on improving the artificial intelligence (AI) algorithm responsible for
species identification and size classification within the Smartrawl system. This was achieved by
training the algorithm with a large dataset of labelled images collected from previous camera trials.
The training and development process massively enhanced the AI’s ability to accurately identify
target species, ensuring more precise catch-and-release decisions during live operations.

4

Milestone 4: Shetland Sea Trials for Gate and Latch Testing

The fourth milestone involved a six-day field trial in Shetland aboard the vessel Atlantia II to test the
functionality of the Smartrawl gate’s rotation and latch mechanism at sea. The trials aimed to
capture video footage of the gate in both catch and release modes, assess its rotational
performance, and evaluate the effectiveness of the latch system. Despite early structural
challenges, successful footage was obtained, demonstrating the gate’s ability to selectively retain
or release species. However, a malfunction in an early version of the latch prevented full testing at
depth. Engineers later identified loose cabling as the issue, which was corrected for subsequent
trials. The fieldwork provided valuable insights into the robustness of the gate design and highlighted
necessary modifications for improved durability and performance in subsequent deployments.

Milestone 5: Smartrawl 5.0 – AI Component Final Report

The fifth milestone focused on finalising the AI component of the Smartrawl system, with a
comprehensive study on fish species identification and sizing using advanced AI algorithms. This
phase involved refining the dataset, optimizing the model’s performance, and preparing practical
installation and usage documentation for deployment.

A key achievement was the creation of a robust dataset comprising 2,918 labelled images of nine
commercial fish species. The dataset captures fish at various angles, positions, and lighting
conditions to improve the AI's ability to generalise across real-world scenarios. Detailed installation
and usage instructions were prepared, guiding users through different configurations based on
operating system (Windows vs. Linux), hardware (Jetson Nano Orin vs. workstation), and processing
mode (inference vs. training). The algorithm is now implemented on the SBC and can also be run on
archived data in the laboratory.

Milestone 6: Shetland Field Trials – Full Smartrawl System Integration

The Shetland field trials marked the first full-scale deployment of the Smartrawl system aboard
Atlantia II, testing its AI-driven stereo camera, gate, and latch mechanism. Despite weather and
equipment delays, the system was successfully deployed and recovered from a small fishing vessel,
demonstrating its ease of use. Initial gate tests revealed rotation inconsistencies due to internal
obstructions and bearing issues, requiring reengineering. The first successful at-depth gate rotation
was recorded on Day 4, though occasional obstructions, affected performance. The fully integrated
system was tested on Day 5, but the latch and image overexposure required camera setting
adjustments. Subsequent hauls revealed inconsistencies in system boot-up, latch engagement
failures, and data acquisition issues, with stereo camera and strobe malfunctions preventing image
validation. However, final hauls (Days 9-10) demonstrated the latch successfully engaging and
triggering gate rotation which was a first. While the trials showcased Smartrawl’s potential, they also
exposed some technical challenges, including gate rotation issues, camera exposure problems, and
latch system inconsistencies. This will guide further refinements for future system refinements and
testing.

As a result of delays in equipment and weather restraints trials abroad a commercial fishing vessel
could not occur. So, milestone 7 was not completed, however Smartrawl phase 6 plans to test the
system on commercial vessels.

5

Table of Contents

Executive summary .. 3

Introduction ... 8

Phase 5 Objectives ... 8

Milestone 1: Latch construction& Milestone 2: SBC Integration .. 9

Introduction ... 9

Components .. 10

1. Cameras .. 10

Information ... 10

Connector / Pinout .. 11

Synchronisation with Strobes .. 11

2. Strobes .. 11

Information ... 11

Internal Connection .. 12

Strobe Maintenance and Access .. 13

3. Magnetic Switch ... 14

Information ... 14

Schematic Diagram ... 16

4. Batteries .. 17

Information ... 17

5. Sensors and Real-Time Clock (RTC) .. 18

Information ... 18

6. Latch ... 19

Information: .. 20

7. Hardware Integration .. 20

ESP32 Data acquisition.. 20

Architecture .. 20

I2C address conflict: ... 22

Incompatible GPIO library:... 22

8. Jetson Nano .. 23

Architecture .. 23

P-FET Switch: ... 23

Synchronisation of Strobe and Camera .. 24

9. Latch architecture .. 25

a.Power management: ... 25

b. Latch control: ... 26

10. Software Integration ... 28

Camera Driver Node .. 28

6

Latch Solenoid Controller Node .. 28

Strobe Trigger Node ... 29

AI Module ROS Wrapper... 29

AI Module .. 29

11. File storage ... 30

Sambashare ... 30

On Windows 11 ... 30

On Windows 10 ... 31

After setting the static IP .. 33

Parameter files .. 34

Milestone 3: Development and completion of final AI Algorithm ... 36

Abstract ... 36

Milestone 4: Six days of field trials in Shetland... 58

Introduction ... 58

Aim and pre-trial objectives .. 59

Aim .. 59

Specific objectives .. 59

Day 1 – 14th November 2023 .. 60

Day 2 – 15th November 2023 .. 61

Day 3 – 16th November 2023 .. 64

Results .. 65

Conclusion .. 66

Milestone 5: Smartrawl 5.0: AI Component Final Report .. 67

1. Overview .. 67

2. Building Dataset for Commercial Fish Species ... 67

3. Installation and Usage Instructions ... 68

3.1 Inference Only .. 69

Create conda environment .. 70

Download MMDetection .. 70

3.1.2 Installation (GPU) ... 72

3.2 Usage ... 73

3.2.1 Note on CSV log .. 76

3.3 Training .. 77

3.4 Extracting Calibration File ... 78

4. Improved Performance statistics to Identify Different Species on Jetson Orin Nano 78

4.1 Jetson Orin Nano .. 78

4.1.1 CUDA ... 79

4.1.2 Jetson Orin Nano Use Cases... 79

4.1.3 Software and Hardware Requirements .. 80

7

4.2 Improved performance statistics to identify commercial fish species 80

4.2.1 Quantitative Evaluation on Jetson Orin Nano .. 80

4.2.2 Qualitative Evaluation ... 81

5. Fish Sizing Improvements ... 83

5.1 Background .. 83

5.1.1 Stereo projection .. 83

5.1.2 Notes ... 84

5.2 Fish Sizing Results .. 85

5.2.1 Stereoscopy ... 85

5.2.2 Demos of fish Sizing .. 86

References ... 88

Milestone 6 : Shetland field trials of the full Smartrawl system integration 90

Day 1 - 21/11/2024: .. 91

Day 2 - 22/11/2024: .. 92

Day 3 - 28/01/2025: .. 92

Day 4 - 29/01/2025: .. 92

Day 5 - 31/01/2025: .. 93

Day 6 – 05-07/02/2025: ... 94

Day 8 (10/02/2025): .. 94

Day 9 – 12/-2/2025:... 95

Day 10 - Feb 14/02/25 .. 97

8

Introduction
Smartrawl is an in-water sorting device which is retrofitted inside the extension of a commercial
fishing trawl net. The system has three components: a stereo camera, taking images of animals in
the trawl; a computer, with artificial intelligence to detect, identify and size animals; and a gate,
controlled by the computer to open or close via the latch, catching or releasing animals. Smartrawl
is designed with, and for, UK fishers, and their vessels to mitigate against discards and bycatch: the
entire system needs no cables from the vessel and can be pre programmed dependent on the
fishermen’s desired catch.

The stereo camera system, takes paired images of animals as they pass by. The system consists of
two cameras, 15cm apart, and two flash units, further apart (70cm), all controlled to trigger
simultaneously and continuously (2 Hz) by a Single Board Computer (SBC). The camera, SBC, and
batteries are housed in single underwater aluminium housing, as is each flash unit, all rated to a
depth of 500m. The housing and flash units are mounted in a neutrally buoyant frame designed to
protect the glass domes of the camera housing and flash units. This frame has been demonstrated
to be robust, and is easily retrofitted to the inside of the extension.

Images acquired by the stereo camera system are then processed by the AI algorithm where species
are detected identified and measured. If specified species and sizes are detected the controller
sends a signal to trigger the latch, enabling the gate to rotate into the catch position.

A patented gate system rotates using the force of water passing through the trawl to operate it. It
does this by incorporating a cylindrical design with rotating conical sections which open and close
off the cod-end, and adjacent doors to side panels in the extension, to catch or release animals. The
force of water acts on vanes in the cylindrical gate to drive the rotation between the catch and
release states. The rotation is restrained by a latch which is released under control of a computer.
The cylindrical gate fits into the existing extension by virtue of its diameter being equal to that of the
extension during trawling.

Phase 5 Objectives
1. The construction of the latch to control the rotation of the gate, allowing the system to catch and
release species.

2. The integration of an AI-capable Single Board Computer (SBC), the Nvidia Jetson Nano. This will
have the AI algorithms incorporated and logic to communicate with the latch.

3. To further improve the initial artificial intelligence algorithm, through training of labelled images
from previous camera trials.

4. To conduct six days of sea trials in Shetland to test the gate component and rotation.

5. The completion of the final artificial intelligence algorithm, documented to successfully detect,
identify and size programmed species.

6 To conduct six days of sea trials in Shetland testing the fully integrated system (all three
components of Smartrawl).

7. To conduct two days of sea trials on a small offshore mixed demersal commercial trawler.

9

Milestone 1: Latch construction& Milestone 2: SBC
Integration

Introduction
The Smartrawl system is specifically designed to enhance selectivity in fishing by
identifying and capturing target fish species while releasing non-target species
unharmed. This capability is achieved through the integration of advanced artificial
intelligence AI algorithms, which allow the system to analyse visual data in real
time. By recognising the distinct physical characteristics of the desired species, the
system automates decision- making, ensuring that only fish meeting specific criteria
are retained.

The system is built around a camera suite, micro-controller (QT PY ESP32 PICO
board), sensors, a single-board computer (Jetson Orin Nano) with a carrier board
(Hadron), and a pair of strobes and cameras. Upon activation, the micro- controller
enters a deep sleep mode immediately to reduce power consumption and can be
woken by a magnetic switch. Once activated, sensors begin collecting data
(orientation, depth, temperature, and power consumption) and store it on the
onboard SD card. When the system reaches the desired depth or set timer, the micro-
controller powers up the single-board computer, which then triggers the cameras to
capture images when the strobes flash. These images are processed by the
computer, and upon detecting the target species, a signal is sent to trigger the latch,
securing the catch. This process continues until the system is powered off.

This document provides a comprehensive overview of the Smartrawl system,
detailing the components within the camera housing and latch container.

10

Components

1. Cameras

Information

 Camera Model: CM3-U3-31S4CS

Resolution: 2048 x 1536

https://www.teledynevisionsolutions.com/products/chameleon3-usb3/?model=CM3-U3-31S4C-CS
https://www.teledynevisionsolutions.com/products/chameleon3-usb3/?model=CM3-U3-31S4C-CS
https://www.teledynevisionsolutions.com/support/support-center/software-firmware-downloads/iis/spinnaker-sdk-download/spinnaker-sdk--download-files/
https://www.teledynevisionsolutions.com/support/support-center/software-firmware-downloads/iis/spinnaker-sdk-download/spinnaker-sdk--download-files/
https://www.teledynevisionsolutions.com/support/support-center/software-firmware-downloads/iis/spinnaker-sdk-download/spinnaker-sdk--download-files/
https://www.teledynevisionsolutions.com/support/support-center/software-firmware-downloads/iis/spinnaker-sdk-download/spinnaker-sdk--download-files/

11

Connector / Pinout

JST connector female: BM09B-NSHSS-TBT JST

connector male: NSHR-09V-S

JST contact: SSHL-003T-P0.2

Synchronisation with Strobes

 Connect pin 4 (GPIO3) from both cameras to strobe trigger signal from Jetson

Connect pin 2 (GND for input/output) from both cameras to ground

2. Strobes

Information

12

Connector on Camera Housing

Face view (male)

The trigger pins in Strobe A and Strobe B are internally tied to the same pin to
SubConn male connector (the white connector in below image), allowing them to be
triggered by a single signal, Trigger A. The Trigger B is just reserved for further use.

Internal Connection

SubConn Male To PCB

1 GND

2 Trigger B

3 Trigger A

4 Power B

5 Power A

SubConn

Bulkhead
Strobe A Strobe B Voltage

1 GND GND GND

2 X X X

3 Trigger Trigger 5V

4 Power B X 24V

5 X Power A 24V

 Note:

13

There are additional electronics in the strobe. There are two high current led drivers
and supporting circuitry. The trigger input is nominal 5V. The trigger is thru an Attiny
which controls the PWM input to the drivers. The Attiny just provides a safety where if
the input trigger is held high for >50 ms, the driver PWM is dropped to 50%. These are
designed as strobes and as such aren't meant to be on very long. 1000-2000 us is the
nominal range of exposure.

Strobe Maintenance and Access

Disassemble

 Place the strobe face down on a rag

 Remove rear plug: Removing the bottom knob by rotating it anti-clockwise using spanner

 Pressurise chamber: Hold the compressed air supply to the air hole and start

pressuring the chamber Very Slowly until the front port pops out

14

Open up the case

Assemble

 Arrange Cables Ensure all cables are neatly placed within the cavity.

 Place Metal Plate Position the metal plate (where the LEDs and PCB sit) securely on the rim,

making sure no cables are trapped underneath.

 Attach Glass Secure the glass by screwing it into place.

Reinstall Bottom Knob Reattach the bottom knob, ensuring the o-ring is properly positioned, and

tighten by rotating clockwise with a spanner.

3. Magnetic Switch

Information
This magnetic switch board is mainly composed of an Attiny85 microcontroller and a
Hall effect switch, which together detect the presence of a magnetic field to trigger
the system's activation.

15

16

Schematic Diagram

Operation Table

Place the magnetic stylus on top of the circular area on the PCB

 pin ⑤ pin ⑥

beginning 5V 5V

orange 0V 5V

orange → blue 5V 5V

orange→ white 5V 0V

white → blue 5V 5V

17

4. Batteries

Information

There are four batteries includes in the system.

Rechargeable batteries in camera housing

Rechargeable batteries in latch container

Coin battery for real time clock(RTC) connected to ESP32 PICO

Rechargeable battery for real time clock(RTC) connected to the Hadron carrier board

18

Name

Ansmann Standard

Li-ion 3S1P Battery

Pack

BlueRobotics

Lithium-ion Battery

Vanadium

Pentoxide Lithium

Rechargeable

Coin Battery

CR1220 Lithium

Manganese

Dioxide Coin

Battery

Nominal Voltage

10.8V

14.8V

3V

3V

Capacity 3.5 Ah 15.6 Ah 7 mAh 36 mAh

Purpose

There are the two

batteries sitting

each side of the

camera housing,

located beneath the

electrical circuit.

When the short

power plug is

inserted into the 7-

pin Subconn

connector, the two

batteries are

connected in series,

delivering a 24V

unregulated output

to power the

strobes.

This is a Lithium- ion

battery located at the

bottom of the latch

container.

This battery powers

the Arduino circuit

in the latch

container, as well as

the ESP32 PICO

board along with

sensors and Jetson

Orin Nano in the

camera housing.

This maintains

timekeeping for

the RTC on the

Jetson Orin Nano

when the main

power supply is

disconnected.

When external

power is

available, it

charges the

battery.

This maintains

timekeeping for

the DS3231 RTC

connected to the

ESP32 PICO when

the main power

supply is

disconnected.

When external

power is available,

the DS3231

operates normally

without drawing

power from the

battery.

RS stock no. 144-5695 669-0505 866-0653

5. Sensors and Real-Time Clock (RTC)

Information

The following 4 components are daisy-chained together to ESP32 PICO through STEMMA

QT/QWIIC (JST SH-4) cables.

19

Module Name
Pressure

Sensor

Power Monitor

Module

IMU Orientation Sensor Real Time Clock

(RTC)

Chip Name Keller 4LD INA219 BNO055 DS3231

I2C Address 0x40 0x44 0x28 0x68

Digikey no. 1528-904-ND 1528-4646-ND 1528-5188-ND

Libraries <KellerLD.h> <Adafruit_INA219.h> <Adafruit_BNO055.h> <RTClib.h>

Purpose High-precision

digital pressure

sensor to

High-side voltage and

current sensor for

monitoring the

9-axis IMU for

determining the

High-accuracy

real-time clock

with battery

 determine the

cameraʼs depth

underwater.

power supplied to the

Jetson Orin Nano.

orientation of the

camera housing.

backup,

providing

precise

timestamps.

6. Latch

20

Information:

The magnetically latching solenoid is chosen for its ability to maintain its position without

requiring a constant power supply.

7. Hardware Integration

ESP32 Data acquisition

Architecture
The schematic below depicts the hardware integration for an ESP32-based data
acquisition system. Upon power-up, the ESP32 PICO microcontroller enters deep
sleep mode to conserve power. An interrupt pin connected to the magnetic switch,
which is pulled low when a magnet is detected, allows the microcontroller to wake
up. Once activated, the microcontroller interfaces with a real-time clock (DS3231), an
inertial measurement unit (BNO055), a power monitor module (INA219), and a pressure
sensor(Keller 4LD), all connected in a daisy-chain configuration via STEMMA
connectors. When a specified depth or time threshold is reached, the microcontroller
triggers a signal to a P-FET switch circuitry (BSS138 + SUD50P06), which powers on
the Jetson board. All sensory data is timestamped and stored on an SD card for later

 Model BLM5/08-12VDC-80W P/T

Coil Voltage 12 VDC

Stroke 25 mm

21

retrieval and analysis. The components are currently integrated onto a stripboard for
compact assembly, with the potential for future integration into a customised PCB
design.

22

The ESP32 PICO microcontroller is dedicated to sensor data acquiring. Ideally, this
shall be integrated with Jetson Orin Nano along with Hadron carrier board. However,
the two following issues preventing this integration, which is why the ESP32 PICO is
being used in this setup instead.

I2C address conflict:
It appears that the I2C address 0x40, which is used by the Keller pressure sensor on I2C bus

1 of the carrier board, is already reserved for an existing device on the NVDIA module.

Running

 will display "UU" in this case. To resolve this, you will need the K-404-T to

change the I2C address or use a multiplexer, which will take up additional space.

Incompatible GPIO library:

The GPIO library used by the development kit is not supported by the carrier board for JetPack

5, meaning the libraries for pressure sensor may not be available.

https://keller-druck.com/en/products/software-accessories/converters/k-404-t

23

8. Jetson Nano

Architecture
The Jetson Orin Nano single-board computer, paired with the Hadron carrier board,
manages strobe triggering, camera image capture, AI computation and latch
command. The schematic below details the interface between the Jetson Orin
Nano and other system components - strobes, cameras and latch. Three separate
control signals from the Jetson (pins PN.01, PQ.06, and PH.00) manage the latch
trigger, strobes and cameras trigger, and strobe power enable functions
respectively. This design ensures clean signal conversion and reliable power
switching for the strobe lights while maintaining proper isolation between the
control and power circuits.

The system's circuitry is primarily composed of the following two circuits: Level

Shifter:

The level shifter circuitry employs a Sziklai pair (also known as a complementary
compound pair) configuration using ZXTC2045 transistors, which combines an NPN
(Q1) and PNP (Q2) transistor to achieve superior voltage level translation. This
configuration is used to convert the Jetson's 3.3V signals to 5V for compatibility with
other system components - strobes, cameras and latch. While a single transistor
could perform basic switching, the Sziklai pair offers several advantages. When the
input signal goes high, Q1 conducts, which then drives Q2 into saturation, providing a
more robust and cleaner output signal. The compound arrangement provides higher
current gain compared to a single transistor, ensuring sharp switching transitions and
better load driving capability. Additionally, this configuration maintains consistent
performance across temperature variations and offers improved linearity in the
transition region, making it ideal for reliable signal level conversion in marine
environments where stable operation is crucial

P-FET Switch:

A P-FET switch circuitry utilises an N-Channel enhancement MOSFET (BSS138) and P
Channel enhancement MOSFET (SUD50P06) to create a high-side switch, enabling
control of high-voltage loads using a low-voltage control signal. This circuitry is
implemented for the strobe enable functionality. When activated, this P-FET switch
circuitry allows 24V to flow to the strobe, providing the required power. This dual-
MOSFET configuration is necessary because P-channel MOSFETs require their gate
voltage to be lower than their source voltage to conduct. The N-channel MOSFET acts
as a driver, effectively pulling down the P-channel MOSFET's gate voltage to turn it on
while maintaining proper voltage levels for both MOSFETs. This arrangement also
ensures robust isolation between the low-voltage control circuitry and the high-
voltage load circuit.

24

Synchronisation of Strobe and Camera
The camera and strobe synchronisation system employs a carefully coordinated
timing mechanism to ensure precise image capture while maintaining power safety
and efficiency. The strobe trigger signal from Jetson Orin Nano is directly connected
to strobe trigger pins and the camera's GPIO pins, enabling the camera to synchronise
its image capture with the strobe's flash. This synchronisation is crucial as it ensures
the camera's exposure coincides with the peak illumination from the strobe. Before
triggering the flash, the system first manages the strobe's power charging cycle
through its enable pin. This pin is initially pulled high for 1ms to allow the strobe's
internal capacitors to charge, then pulled low. This controlled charging approach
prevents excessive current draw that could rapidly drain the batteries. Once the
capacitors are charged, the trigger pin initiates a 2ms flash command, during which
the stored energy in the capacitors is discharged to provide illumination for image
capture, rather than drawing directly from the batteries. This sophisticated power
management and timing strategy ensures optimal image quality while protecting
battery life by utilising stored capacitor energy rather than direct battery power for the
high-current flash event.

25

It is worth noting that although the flash time is set to 2ms, oscilloscope
measurements reveal an actual flash duration of 9ms. The primary reason for the
timing discrepancy between the commanded flash duration and the measured flash
duration likely stems from software execution and system latency. First, Python's
 is not designed for microsecond-precise timing. When a 2ms sleep is
requested, the actual sleep time might be longer because Python needs to wait for
the next available CPU cycle after the sleep period, and the scheduler might not
immediately return control to the process. Secondly, using subprocess module to
control GPIO adds another layer of system calls and potential delays. Each
subprocess call involves creating a new process, executing the command, and
cleaning up, which introduces additional overhead. This process creation and
management time adds to the overall timing inconsistency.

9. Latch architecture

Architecture

This schematic below illustrates the power distribution and control system for
components locating inside the latch container. This latch system allows the
attaching gate to be set into ‘catchʼ or ‘releaseʼ position.

a.Power management:
The system is powered by a 14.8V Lithium-ion battery connected through a switch
and protected by a 10A fuse. The power path is fed to a low voltage (XH-M609), which
serves as a critical battery protection component in the system. It monitors the 14.8V
battery voltage and automatically cuts off power when the voltage drops below a
preset threshold, which prevents over-discharge that could permanently damage the
lithium battery. This is followed by a buck converter (step-down) switching regulator
(HW411) that converts 14.8V input to a stable 9V output for powering the Arduino
Nano microcontroller. Switching regulators are preferred over linear regulators in this
application because of their higher efficiency, typically exceeding 90%, which is
crucial for battery-powered systems.

26

b. Latch control:
The latch is attached to the gate to set the get into either ‘catchʼ or ‘releaseʼ position.
Here, a latch solenoid (BLM5 8-12V P/T) is deployed as it is a specialised type of
solenoid designed to hold a position without continuous power. When energised, the
latch solenoid moves a plunger to a specific position and then "latches" in place,
maintaining that position even after the power is removed. To return to the initial
position, a reversed power is needed to unlatch it. Therefore, only a brief surge signal
is required to latch or unlatch the solenoid. To provide bidirectional pulses, the
system employs a 2-channel relay configuration, which interfaces with the Arduino
Nano. When Channel 1 is activated and Channel 2 is deactivated, current flows in
one direction to release the lock. Conversely, when Channel 1 is deactivated and
Channel 2 is activated, current flows in the opposite direction to engage the locking
mechanism. A 1kΩ pull-down resistor is connected to latch trigger pin, which
receives the latch control signal from the Jetson Orin Nano.

27

28

10. Software Integration
Node Structure

Overview

The overall node structure can be seen in the above diagram.

Camera Driver Node

This node is responsible for retrieving the raw image data produced by the cameras to

convert to a ROS Image message. This image message is published to the ROS network,

where the AI Module ROS Wrapper can subscribe from to retrieve the image data. This

node is also responsible for setting camera parameters on boot.

Latch Solenoid Controller Node

This node is responsible for processing Latch Command Trigger requests and changing

the state of the latch according to the request. It makes use of a ROS service server to

allow other nodes on the ROS network to trigger this behaviour.

29

Strobe Trigger Node
This node is responsible for the triggering of the strobe/camera pair using a PLC
interface. It makes use of a ROS service server to allow other nodes in the ROS
network to trigger the strobe/camera pair. The system is configured to turn on the
strobe for 2ms while the camera takes the image in the same timing. The triggering of
the camera results in a new image being captured, which is processed by the Camera
Driver Node.

AI Module ROS Wrapper
This node is a basic interface between the AI Module python code and the ROS
network. This node creates functions that allows the AI Module to make service
requests in the ROS network (mainly triggering the strobe/camera pair & triggering the
latch) as well as converting the image data published by the Camera Driver node to a
data format easily accessible by the AI Module python code.

AI Module
This is the main processing module for running classification. The node is also
responsible for triggering the strobe/camera pair, as well as triggering the latch to
switch states.

The high-level overview of the AI module action flowchart is as follows:

New image is received by the AI Module (from the AI Module ROS Wrapper), triggering
the processing of the image

Object detection and classification is ran on the image to detect any fish that may be in
frame

Once classification is done, whether the latch is triggered is decided based upon
configuration parameters. If yes, the latch trigger request function is called for the
Latch Solenoid Controller Node to handle. If no, the latch trigger step is skipped. The
processed image is saved to disk at this stage.

Regardless of the latch being triggered, once processing is complete the
strobe/camera pair trigger request function is called for the Strobe Trigger node to
handle.

30

As described under the Strobe Trigger Node, the triggering of the strobe/camera pair
in step 4. results in the cameras capturing a new image for the Camera Driver Node
to acquire and publish to the ROS network. This image is then subscribed to by the
AI Module ROS wrapper, which is sent to the AI Module to start the process from step
1 again.

The above architecture results in the AI Moduleʼs processing speed become the
bottleneck for the camera framerate. The current configuration results in 1 image
every 2 seconds)

11. File storage

Sambashare
The system makes use of Sambashare to make it possible for devices connected on
the same network via ethernet as the system to access the parameter files as well
as the saved images themselves.

The static IP of the system is 192.168.88.245, and the system must be powered to be
able to access via ethernet connector.

Power settings are 15V 2A if you have a power supply, otherwise connecting the
positive and negative terminals of a car battery to the respective power cables should
suffice to power the system, don't forget to use the magnetic switch to power on once
the system is being powered by an external source)

On Windows 11
While connected via ethernet with the system, you will need to edit their ethernet
connection settings to the following or similar with a static IP

https://www.techrepublic.com/article/how-to-connect-to-linux-samba-shares-from-windows-10/
https://www.techrepublic.com/article/how-to-connect-to-linux-samba-shares-from-windows-10/

31

On Windows 10
Open the Windows search bar and enter the following and press enter to open
Network Connections:

This will lead you to a window that looks like below:

While connected to the system via ethernet, right click on the Ethernet icon that
shows as connected and select “Propertiesˮ:

32

Double-click on “Internet Protocol Version 4 (TCP/IPv4)ˮ:

In the following window, enter the details shown below:

33

Click the OK button on “Internet Protocol Version 4 (TCP/IPv4) Propertiesˮ window, and also click
the OK button on “Ethernet Propertiesˮ window to save the settings.

After setting the static IP
Once connected via ethernet you can access the config files and images by going into file explorer,
selecting the address bar in the file explorer and entering the following:

When you first connect you'll be prompted to give credentials:

34

The username and password are:

username: root

password: smartrawl

Parameter files
Config files are found in the "config" subfolder once connected to the sambashare
directory:

35

the red lined section is the address bar of the file explorer in windows Camera parameters can be
found under

The params that can be adjusted are:

gain_auto

"Continuous" will set it to automatic gain adjustment regardless of value set for

"gain". When set to "Off", it will take and use the value in "gain" as a static value.

gain A static value used for the gain assuming “gain_autoˮ is set to “Offˮ

exposure_auto

"Continuous" will set it to automatic exposure adjustment regardless of value set

for "exposure_time". When set to "Off", it will take and use the value in

"exposure_time" as a static value.

exposure_time A static value used for the exposure time assuming “exposure_autoˮ is set to “Offˮ

36

Milestone 3: Development and completion of final AI Algorithm

Smartrawl 5.0 Report for AI Package: An

Underwater Aquatic Animal Instance

Segmentation Benchmark Dataset for Sustainable

Fishing and Beyond

Dewei Yi, Chris Moorhead, Yiren Li, Yining Hua, and Paul G. Fernandes

Abstract
Sustainable fishing would greatly benefit from improved precision in the capture process, requiring fine- grained underwater

aquatic animal instance segmentation (UAAIS). While deep learning has shown promise in instance segmentation, deep-

based UAAIS is hindered by limited labeled datasets for object detection and semantic segmentation. To address this, we

constructed UAAIS2K, a dataset with 2,431 labeled images encompassing various objects encountered in fishing. It includes

common marine animals, camouflaged species, and underwater scenes without marine life. Each image from UAAIS2K

dataset has rich annotations, including an object-level mask, a category name, a bounding box, and attributes. Furthermore,

a novel instance segmentation approach, Cascaded Boost Seesaw Contrastive Network (CBSC-Net), is proposed. By

employing contrastive learning and integrating cascaded instance boosting and seesaw loss modules, our proposed method

enhances instance segmentation performance for fish detection and species identification in underwater trawl capture

scenarios. Through extensive experiments comparing with 10 cutting-edge models, our method demonstrates superior

qualitative and quantitative performance. positioning it as an effective solution for fish detection and species identification

in underwater trawl capture scenarios.

Index Terms

Instance segmentation; convolutional neural network (CNN); underwater dataset; contrastive learning;

I. INTRODUCTION

Sustainable fishing necessitates addressing challenges like discarding and bycatch, where unwanted animals

are caught and discarded, often resulting in their death [1]. To achieve greater precision in the fish

capture process, image analysis techniques, particularly deep learning, have been employed in various

aquaculture tasks, including fish detection, marine animal identification, and underwater image enhancement

[2–5]. Among these tasks, the instance segmentation of marine animal plays a vital role since it can provide

important information for identifying marine animals from the complex underwater environment. Such

information proves invaluable to the fishing industry, enabling the identification of fish prior to capture, and

facilitating the use of selective devices to release unwanted animals.

Leveraging artificial intelligence techniques, deep learning has been widely applied in marine animal

research, encompassing fish identification [5], marine animal identification [6], marine biology and archae-

ology [4] and underwater image enhancement [3]. In trawl nets, camera systems have been deployed to

enhance marine animal species identification and reduce non-target species catches [7]. Undersea aquatic

animal instance segmentation (UAAIS) plays a pivotal role in providing crucial species identification and

abundance information, offering the potential for more cost-effective fishery resource monitoring.

37

However, accurate UAAIS poses a significant challenge due to the complexity of the marine fishing

environment. Underwater images are prone to quality issues caused by the intricate nature of underwater

settings. Insufficient luminosity results in low image brightness, while underwater turbidity leads to blurriness

and color distortion. Several methods have been proposed to address these challenges, including image

enhancement techniques that aim to resolve the low-quality issue of underwater images [3]. While these

methods primarily focus on enhancing the overall visual quality and are not directly tailored to the UAAIS

task. As suggested in [8], instance segmentation approaches can be categorised into one-stage methods and

two-stage methods. While two-stage methods entail slightly higher computational costs, they generally offer

better accuracy compared to one-stage methods. Given the importance of accuracy in deep-sea vision-based

fishing, we adopt a two-stage architecture in our proposed method, recognizing its potential to deliver superior

results.

To tackle the unique challenges associated with the underwater environment and enhance the accuracy of

UAAIS for effective deep-sea fishing applications, we introduce a novel cascade-boosting seesaw contrastive

learning instance segmentation network in this paper, which is designed for fish detection and species

identification in undersea fish trawl scenarios. Specifically, our proposed method improves instance

segmentation performance through the integration of cascade module, instance boosting module, contrastive

learning module, and seesaw loss module. The instance boosting module enhances training data by

introducing augmented instances through the insertion of objects in the surrounding area of their initial

positions, along with augmented variations of scale and rotation. The cascade module consists of multiple

detection and segmentation branches, utilising a cascaded approach for bounding box regression and

detection to improve the quality of hypotheses and achieve high-quality object detection. The contrastive

learning module facilitates contrast between multiple image views by comparing cluster assignments rather

than features, enabling the calculation of contrastive loss. To enhance the training process, the input image

undergoes a boosting process, generating additional instances. These boosted samples are subsequently fed

into both the Cascade module and the contrastive learning module, from which their respective training losses

are obtained. Finally, the acquired training losses from the Cascade module and contrastive learning modules

are fed into the seesaw loss module, which calculates the overall loss. Then, the overall loss is utilised to

optimise the network parameters, fine-tuning the model for improved performance. To validate the

performance of our proposed method and compare it with state-of-the-art techniques, we have curated a

newly collected undersea fish trawl image dataset.

In summary, this paper presents several key contributions:

• A novel cascaded Boost Seesaw Contrastive Network is proposed for instance segmentation, enabling
fish detection, shape segmentation, and species recognition. The cascaded mechanism combines multiple
detection branches in parallel with a segmentation branch.

• An advanced instance-level augmentation technique is introduced across all branches to achieve a
synergistic effect, resulting in improved object detection and semantic segmentation performance.

• To address the challenge of long-tailed data, a seesaw loss function is introduced. It mitigates over-
whelming gradients from negative samples in tail classes and compensates for misclassified samples,
reducing false positives in instance segmentation.

• A unique fish-catching dataset is collected from the North Sea, consisting of extensive underwater
fish and trawl images. This dataset serves as a valuable resource for training and evaluation purposes.

Our proposed method is also compared against state-of-the-art (SOTA) methods based on the collected

dataset, to demonstrate its superiority.

38

II. RELATED WORK

A. Instance Segmentation

Instance segmentation methods can be broadly classified into two categories: two-stage instance seg-

mentation and one-stage instance segmentation. Two-stage models typically follow a detection-before-

segmentation strategy. These models employ a two-stage detector to obtain target bounding boxes, followed

by pixel classification and mask acquisition within the bounding boxes. Mask RCNN [9] is a classic two-

stage instance segmentation model, where a mask segmentation branch is added on Faster RCNN. Inspired

by this, Mask Scoring RCNN [10] is proposed, which is used to re-evaluate the quality of predicted masks

by adding a MaskIoU Head module in instance segmentation branch. Taking advantage of the cascade

strategy, Cascade Mask RCNN [11] is proposed introducing multiple detection modules with segmentation

heads in each module. Instaboost [12] leverages instance boosting to enhance object detection and pixel- level

segmentation performance. PointRend [13] improves instance segmentation by iteratively predicting masks

at progressively finer resolutions using upsampling and convolutional layers.

In contrast, one-stage instance segmentation models are anchor-free and eliminate the need to set anchor-
boxes on feature maps. SOLO [14] simplifies the model structure by categorising instance segmentation into

category and mask prediction tasks. SOLO divides the input image into S × S grids, with the category

prediction branch responsible for grid category prediction and the mask prediction branch re- sponsible for
predicting masks in the corresponding feature map. On the basis of the SOLO, SOLOv2 [15]
introduces dynamic convolution, enabling dynamic instance segmentation based on location information and

significantly improving performance. Inspired by object detection method YOLO, YOLACT [16] is proposed

for instance segmentation which break instance segmentation into two concurrent subtasks: (1) producing a

collection of prototype masks and (2) estimating mask coefficients for each instance. Unlike YOLACT,

QueryInst [17] utilises a Query-Adaptive Module (QAM) to adaptively incorporate object context

information from different regions of the input image, enhancing handling of complex instances with

occlusions and irregular shapes.

Considering the importance of accuracy in deep sea vision-based fishing, where two-stage models achieve

high segmentation accuracy, our proposed method for deep-sea fishing also adopts a two-stage instance

segmentation model.

B. Marine Animal Detection

In recent years, there has been a growing research focus on marine animal detection, specifically the

localization and identification of marine animals in images. While some studies have focused on scallop and

coral reef detection, the majority have centered around fish detection [18][19]. Early efforts in this field

employed traditional computer vision methods, such as morphological or histogram techniques [20][21].

However, a comparative study conducted by [22] revealed that deep learning-based approaches outperformed

these traditional methods in coral reef fish detection. Another work by [23] utilised ResNet with cross-layer

pooling to enhance the discriminative ability of fish category classification, while [19] presented a deep

learning-based model for scallop detection based on a variant of YOLOv2.

In the context of sustainable fishing, three primary challenges arise: 1) the presence of rapidly moving targets,

2) the occurrence of multiple objects from different categories within a single image, and 3) the importance

of accurately determining the quantities of each category. To address these challenges, [24] employed

RetinaNet to analyze multiple frames of video and identify fish specifically in the final frame.

[25] achieved favorable results in fish detection, primarily in well-lit wide-view settings. [26] utilised

the Single Shot Multibox Detector (SSD) with a MobileNet backbone and achieved some success with lower-

quality images.

39

However, all of these previous works relied on bounding boxes for localization, in contrast to our

segmentation approach. The motivation and advantage of our segmentation approach lie in providing

improved size estimation for captured fish. While [21] successfully applied a segmentation technique in a

similar study, they employed traditional techniques and did not attempt species identification. On the other

hand, [27] performed segmentation and identification tasks but not in a live environment. Their focus was on

post-capture fish discards rather than developing an integrated system to prevent discards in real-time.

III. PROPOSED BENCHMARK DATASET

During our comprehensive literature review, we discovered a notable void in the field of underwater object

detection—an absence of a large-scale, real-world deep-sea image dataset. In order to fill this gap and

contribute to the advancement of underwater object detection methodologies, we present the UAAIS2K

dataset in this section. The dataset is accompanied by detailed descriptions covering key aspects, including

image collection, data annotation, data pre-processing, data augmentation, and dataset features.

(a) (unk gadoid, squid) (b) (plaice, herring) (c) (sprat, haddock) (d) (sole, dab)

Fig. 1: Examples of raw images and their annotations in UAAIS2K dataset. Top row: raw images collected

in diverse undersea trawl scenes; Bottom row: their corresponding annotations of object, pixel, and category

levels, where the captions under images identify underwater animals showing in the images.

A. Image Collection

The aquatic images in our dataset were collected from different deployments conducted in the North Sea,

specifically from the Sparkling Star and Shetland deployments. The Sparkling Star deployment took place in

2019, while the Shetland deployment consists of more recent images from 2022. Our UAAIS2K dataset

encompasses a diverse range of aquatic animals, including 17 categories such as clupeid, haddock, prawn,

squid, unknown (unk) gadoid, whiting, cod, dab, herring, sole, unknown fish (unk fish), unknown organism

(unk organism), dogfish, plaice, sprat, unknown flatfish (unk flat fish), and unknown round fish (unk round

fish). In total, the dataset comprises 2,326 underwater trawl images, with a total of 3,356 instances of aquatic

animals annotated within these images.

40

TABLE I
THE STATISTICS OF UAAIS2K DATASET (UNK: UNKNOWN)

Category # of Instances Category # of Instances

Clupeid 168 Sole 32

Haddock 1029 Unk fish 183

Prawn 331 Unk organism 24

Squid 49 Dogfish 27

Unk gadoid 446 Plaice 19

Whiting 191 Sprat 20

Cod 19 Unk flat fish 43

Dab 700 Unk round fish 46

Herring 29 Total 3356

B. Data Annotation

Human experts meticulously annotated the images collected from three deployments in our dataset. The

annotations encompass four types of labels: object-level, pixel-level, category-level, and attributes. To

annotate raw image data, LabelMe annotation software tool is used to produce object level, pixel level, and

category level annotations. For the attribute annotation, we follow the setting of MS COCO dataset to

identify medium size objects and large size objects.

Fig. 2: There are three fish instances with size estimations in paired stereo images (left camera image and

right camera image). Ellipse estimators used for stereographic projection of head and tail points.

1) Object level annotation: Drawing inspiration from the MS COCO dataset, we employed object-level

annotations in our dataset. Each object is localized using rectangular bounding boxes, aligning our label

format with MS COCO for better consistency. Object-level annotations are crucial for object detection

tasks, and examples of such annotations can be found in Figure 1.

2) Pixel level annotation: Pixel-level annotation involves assigning each pixel within an image to

a specific category, enabling evaluation for semantic segmentation tasks. Similar to the object-level

annotations, our label format adheres to the MS COCO dataset standards. Figure 1 demonstrates the

pixel-wise annotations, with distinct masks assigned to different underwater animals.

3) Category level annotation: Our dataset includes 17 categories of marine animals, such as clupeid,

cod, dab, dogfish, haddock, herring, plaice, prawn, sole, sprat, squid, unknown fish (unk fish), unknown

flatfish (unk flatfish), unknown gadoid (unk gadoid), unknown organism (unk organism), unknown round

fish (unk round fish), and whiting. Figure 1 exhibits the presence of various fish categories in an underwater

image.

41

4) Attributes: To provide informative attribute labels, each image in our dataset is annotated with three

attributes: big object, medium object, and multiple objects. We followed the attribute annotation setting

of the MS COCO dataset, which enables the identification of medium-sized and large-sized objects.

By incorporating these detailed annotations, our dataset offers valuable information for object detection,

semantic segmentation, and attribute analysis tasks, enabling researchers to delve into various aspects of

underwater marine animal analysis.

C. Data Pre-processing

The original data were captured using a stereo camera system. To filter out images without fish in an

unsupervised manner, we developed a CNN-based one-class support vector machine (SVM) filter algorithm.

In this approach, a pre-trained CNN is used to extract features from the raw images, which are then passed to

the one-class SVM to cluster the images containing fish. This automated filtering process does not require

any labels.

D. Data Augmentation

Data augmentation is employed to increase the amount of data available for training and testing, aiming to

enhance generalisation and prevent overfitting. For training data augmentation, common techniques such

TABLE II CHARACTERIZATION OF RAW DATA

Raw Datasets Folder name Number of Data

Sparkling Star Deployment Left 1000

19 July 2019 Right 1000

Deployment 26 2899-Right Camera 17391

1 April 2022 2900-Left Camera 17390

Deployment 27 2899-Right Camera 17489

1 April 2022 2900-Left Camera 17488

as zooming, flipping, shifting, etc., are applied to create replicas of images from the training dataset. In testing

data augmentation, multiple enhanced copies of each test image are generated, and the model provides

predictions for each copy, forming an ensemble of predictions. In this study, both the training and testing

data are augmented to improve performance, following the augmentation operations and scale jitter as

described in [28].

E. Dataset Features and Statistics

The undersea fishing image collection in our dataset offers several notable features. Firstly, it covers a

diverse range of undersea fishing scenes, providing a comprehensive representation of the underwater

environment. Secondly, the dataset includes pixel-level annotations for 17 commercial fish species, en- abling

detailed analysis and species-specific tasks. Thirdly, paired images from the stereo-vision system are

included, allowing for fish size estimation. Lastly, the dataset is split into training and testing sets, considering

the balance of fish species and numbers. This division facilitates convenient training of models and evaluation

of object detection and semantic segmentation performance.

F. Existing data and New progress on Data Annotation

This subsection describes the raw data structure with blue background, data preprocessing, data extraction,

image labelling and final statistical results. In particular, the Smartrawl 5.0 project consists of three different

raw datasets: the dataset captured on 19 July 2019 from the Sparkling Star deployment and the dataset

captured on 1 April 2022 from the North Sea. These datasets contain different identifiers such as the number

of each species captured, the date and specific time of collection, image number and species name. The table

below shows the structure of the raw data and the total amount of data from the left and right cameras. The

42

table below shows the raw data collected on the different dates, as well as the total amount of image data

from the left and right cameras.

For a clearer and more specific details of the structure of the data, the following is a descriptive table of

the dataset from Sparkling Star deployment collected on 19 July 2019. The dataset has been annotated by

oceanographers and includes spreadsheets containing information on the date, time, number, number of

organisms, and type of organism for each image collected. These image datasets containing different species

are accessible and available in real time.

As the original dataset collected for deployment in 2022 is relatively large and not easily processed, we

will need to perform pre-processing steps such as extracting and filtering the images, as some images do not

contain organisms. Feature extraction will be used as the primary step in downscaling, using machine learning

and deep learning algorithms to filter out images that may contain fish species while retaining information

from the original dataset. During the initial processing, the left and right camera files were divided into a

folder for every 1000 images, and filtering was performed using MATLAB (Matrix Laboratory). The total

number of filtered images in the deployed dataset is shown in Table III.

IV. PROPOSED UNDERWATER INSTANCE SEGMENTATION MODEL

A. Architecture of Cascaded Boost Seesaw Contrastive Network (CBSC-Net)

Our network architecture comprises several modules: the cascade module, instance boost module, contrastive

learning module, and seesaw loss module. As shown in Figure 4, the input image is first

Fig. 3: Details of the dataset from Sparkling Star’s deployment collected on 19 July 2019.

43

TABLE III

NUMBER OF FILTERED IMAGES

Raw Datasets Folder name Number of Filtered images

Deployment 26 2899-Right Camera 1808

1 April 2022 2900-Left Camera 1808

Deployment 27 2899-Right Camera 1507

1 April 2022 2900-Left Camera 1507

boosted to generate additional instances, thereby enhancing the training process. These boosted samples are

then passed through the cascade module and contrastive learning module to calculate their respective training

losses. The obtained losses from the cascade and contrastive learning modules are subsequently fed into the

seesaw loss module, which computes the overall loss to optimize the network parameters.

The instance boosting module augments the training data by inserting objects near their original positions and

applying additional jittering in terms of scale and rotation. The cascade module consists of multiple detection

and segmentation branches, which work together to improve detection performance. This is achieved through

cascaded bounding box regression and detection. The contrastive learning module focuses on contrasting

multiple image views based on their cluster assignments rather than their features, enabling the extraction of

contrastive loss.

B. Cascaded Boost

In terms of the cascade architecture, the segmentation branch is integrated in parallel with multiple detection

branches. To address the challenges of determining the optimal placement and number of segmentation

branches, we introduce a single mask prediction head at each stage of the Cascade R- CNN. This

approach maximizes the diversity of samples used to learn the mask prediction task. During inference, the

model predicts segmentation masks on the patches generated by the final object detection

44

Fig. 4: The overall architecture of the proposed cascaded boost seesaw contrastive network, where three
instance segmentation networks (i.e., H1, H2, and H3) are cascaded together. Their corresponding

bounding box branches (i.e., B0, B1, B2, B3) and Classification branches (i.e., C1, C2, C3) are optimised by

Seesaw loss. Segmentation branches (i.e., S1, S2, and S3) are optimised by Cross Entropy. X is a instance

boosted fish image and constrastive loss is computed by the feature vectors from swapping assignments
between views of the same image.stage, and the final mask prediction is obtained through an ensemble of
specifically designed segmentation branches.

For data augmentation, instance-level boost is applied within the cascaded network architecture. The affine

transformation matrix A is utilised to define the placement of a cropped object patch within the original

image. This matrix determines the position and orientation of the object when it is placed back onto the

original image.

 (1)

where ∆x denotes the horizontal offset and ∆y denotes the vertical offset. s and r are the scale variance and

rotation in degrees, respectively. Thus, the placement can be determined uniquely.

According to stochastic grammar of images, a probabilistic model is capable of capturing the inherent
frequency of object occurrences in a natural setting and then sampled to synthesise an extensive config-
urations to encompass unseen instances in the test set. With considering this objective, we establish a

probability density function f (·) to assess the plausibility of placing object O onto the provided image

I using a designated transformation tuple. Considering the original coordinates of the object as (x0, y0)
and given the image and object conditions (I, O), a probability map P is formulated as follows.

 P (x, y, s, r|I, O) = f (∆x, ∆y, s, r|I, O) (2)

45

n

where the new coordinates are determined as x = x0 + ∆x and y = y0 + ∆y. Notably, the identity transform

(x0, y0, 1, 0), i.e., the original paste configuration, should exhibit the highest probability.

Due to the inherent continuity and redundancy of pixel-level information in images, the probability map P

(x, y, s, r|I, O) is anticipated to have high values within a small neighbouring region around (x0, y0, 1,

0). Following [12], we employ object jittering, a technique that involves randomly sampling transformation
tuples from the neighbouring space of the identity transform (x0, y0, 1, 0) and applying an affine transformation
A to paste the cropped object. If the background exhibits a similar pattern over a

wide range, the position of (x, y) is possible to be extended beyond the neighbouring area of (x0, y0).

Thus, consistency heatmap is used to identify the redundancy in continuous but non-aligned features of
background. With the guidance of such heatmap, we can maximise the utility of our object jittering.

C. Seesaw Contrastive Learning

To further enhance performance, we have integrated seesaw loss into our contrastive learning approach. In

contrastive learning, the goal is to learn visual features by swapping assignments between multiple views of

the same image, as exemplified by the Swapping Assignments between multiple Views (SwAV) method.

This approach enables the learning of visual features in an unsupervised manner, without relying on explicit

labels. Unlike traditional clustering-based methods, SwAV focuses on enforcing consistent mapping between

views of the identical image, rather than solely comparing features.

Inspired by contrastive instance learning, which aims to ensure consistent mapping between views of the

identical image without explicitly targeting specific codes, we generate a code by augmenting the image and

subsequently predict this code from other augmented versions of the identical image. From diverse

augmentations of the identical image, we derive two distinct image features denoted as zt and zs. These

features are used to produce their respective codes, qt and qs by matching them to a collection of K

prototypes. To address the ”Swapped” prediction problem, we employ the following contrastive loss function:

 LCL(z1, z2) = l(z1, q2) + l(z2, q1) (3)

where the function l(z1, q2) serves to measure the alignment between the features z1 and a given code q2 which

is similar to l(z2, q1). Contrastive learning is employed to compare the features z1 and z2 through q1 and

q2, which are their corresponding intermediate codes. When z1 captures the same information with z2, the

corresponding code q1 of z1 should be feasible to be predicted by z2.

1) Online clustering: For each image xn, it undergoes a transformation t to produce an augmented

view xt . This augmented view, denoted as xt , is then mapped to a vector representation using the function n n

fθ. Subsequently, the obtained feature is projected onto the unit sphere as follows
 (4)

46

n

n

where || • ||2 is L2 norm, transformation t is sampled from a set of image augmentations T , and fθ is a

non-linear mapping function to map xt to a latent feature vector.
By using the feature zt , we then derive a code qt by mapping it to a set of K trainable prototype
n n

vectors c1, . . . , cK. Such a mapping process allows us to capture the essence of the feature within the

code representation. To facilitate this, we construct a matrix C where each column corresponds to one of the

prototypes c1, . . . , cK. Thus, matrix C is given as follows.

 C = [c1, . . . , cK] (5)

For the sake of calculating these codes and dynamically update the prototypes, the contrastive loss can be
expressed as two terms for the swapped prediction. The first term involves predicting the code q1 from the

feature z2. The second term predicts the code q2 from z1. Each term represents the cross entropy

losscomputed between the code and the probability, which is obtained by applying the softmax function
to the dot products of zi and all prototypes in the matrix C, i.e.,

 (6)

where τ is a temperature parameter to adjust the spread of the probability distribution obtained from dot

product computations [28]. By applying this loss to both images and pairs of data augmentations, the below

loss function is derived for the swapped prediction problem.

 (7)

The joint minimization of the derived loss function is performed with respect to both the prototypes C
and the parameters θ of the image encoder fθ responsible for generating the features zt . During online

code computation, we calculate the codes exclusively using the image features within a batch. This
approach allows SwAV to cluster multiple instances to the prototypes C”. To ensure distinct codes for

different images in a batch and avoid a trivial solution where all images have the same code, we employ an
equipartition constraint. By using the prototypes C, we compute codes that evenly partition all examples

in a batch. The objective is to map B feature vectors Z = [z1, ..., zB] to the prototypes C = [c1, ..., ck],

denoted as codes Q = [q1, ..., qB]. The optimization goal is to maximize the similarity between the features

and the prototypes, which is denoted as follows.

47

 (8)

where Q∗ is the solution for maximising the similarity of features and prototypes. The parameter ϵ controls

the smoothness of the mapping. A high ϵ leads to strong entropy regularization so as to result in a trivial

solution. All samples collapse into a single representation and are uniformly assigned to all prototypes.

Therefore, in practice, we maintain a low value for ϵ to avoid this issue.

2) Multi-crop Augmenting views: To overcome the weakness of random crops whose the memory and

compute requirements are increased exponentially with the increase of the number of crops or “views”,

a multi-crop strategy is introduced into our proposed method. There are two standard resolutions used

in cropping and sampling V additional low resolution crops in order to cover only small parts of the

image. With applying low resolution images, it can remain a small increase in the compute cost. More

specifically, the contrastive loss is generalised through the following formulation

 (9)

where i ∈ {1, 2} represent two standard resolution crops. 1v̸=i stands that it equals to one when v ̸= i,

otherwise it equals to zero. Only codes of the full resolution crops are computed because high computation
load for computing codes of all crops. In practice, it observes that using only partial information from small

crops, which cover a limited area of the images, can lead to a degradation in the quality of assignments. To

solve this issue, multi-crop augmentation strategy [28] is adopted to improve the performance.

3) Seesaw loss: To alleviate the problem on long-tailed data, seesaw loss is introduced to address the

issue of overwhelming gradients of negative samples on tail classes and to compensate the gradients of

misclassified samples to avoid false positives for instance segmentation. In seesaw loss, the impact of

negative samples from head classes on a tail class is reduced by decreasing the gradients imposed on the

tail class. The Seesaw loss is given as follows.

 (10)

where Z = [z1, z2, . . . , zC] and yi ∈ {0, 1}, i ∈ {1, . . . , C}. Bij is a tunable balancing factor between

different classes. By a careful design of Bij, Seesaw loss adjusts the punishments on class j from positive
samples of class i. Seesaw loss determines Bij by a mitigation factor and a compensation factor as

 Bij = Mij · Cij (11)

where the mitigation factor Mij reduces the penalty on the tail class j in proportion to the ratio of instance

numbers between the tail class j and the head class i. Conversely, the compensation factor Cij amplifies the

penalty on class j whenever an instance from the head class i is misclassified as class j.

48

4) Overall Optimisation Function: The overall loss is formed by three parts. The first part is the seesaw

loss of bounding box and class branches. The second part is the contrastive loss of swapping assignments

between views. The third part is the cross entropy loss of the segmentation branch, which is provided as

below.

 (12)

where yi is the predicted logits of pixel-level classification. For mask loss, there is a prediction mask produced

for each class and therefore the mask loss is specified as the average binary cross entropy loss for

segmentation.

Therefore, the overall loss combines all seesaw loss, contrastive loss, and cross entropy loss together, which

is defined as follows.

 Loverall = Lseesaw(Z) + LCE(Z) + LCL(z1, z2) (13)

D. Implementation Details

The implementation of our method is based on PyTorch, which is a deep learning framework. For the

backbone network, the pre-trained ResNet50 [29] on ImageNet [30] is chosen due to its competent

performance [30]. Stochastic Gradient Descent (SGD) is used to optimise instance segmentation networks.

Following the work in [12], the networks are trained for 48 epochs and batch size is set 2. The initial Learning

Rate (LR) is set to 0.02 to avoid exploding gradients and the momentum and weight decay is set to 0.9

and 0.0001, respectively. For the hardware configurations, we run all experiments on a PC with CPU: Intel

2.60GHz i7-10750H, GPU: GeForce RTX 3090, and RAM: 64 GB.

V. EXPERIMENTS AND EVALUATION

A. Experiment Settings

We divide UAAIS2K dataset into training and testing sets. For the image level, in the training set of our

UAAIS2K dataset, it contains 1,853 images. In the testing set of our UAAIS2K dataset, it consists of 463

images. For the instance level, there are 2,676 instances in the training set and 680 instances in the testing

set.

To test the performance of our CBCS-Net, we compared our CBCS-Net with existing state-of-the-art (SOTA)

methods, including ten of Mask R-CNN (MRCNN) [9], Cascade MRCNN [11], Mask Scoring RCNN [10],

Instboost [12], Yolact [16], point rend [13], and Queryinst [17], which can both provide predicted bounding

boxes and segmentation masks; three of semantic segmentation models, Solo [14], Solov2 [15], and SparInst

[31], which solely provide predicted segmentation masks.

49

p

B. Evaluation Metrics

To evaluate our method comprehensively, we assess the performance of both instance mask prediction and

BBOX detection in underwater environments. We report the standard OCO metrics including Average

Precision (AP), AP50, AP75, APS, APM , and APL. AP is measured by averaging over different thresholds

of IoU from 0.5 to 0.95 with a step size of 0.05. That is, AP is calculated by averaging the APs over all object
categories, which is six categories in our case and all 10 IoU thresholds from 0.5 to 0.95 with a step size

of 0.05. Such averaging over IoUs and categories provides a thorough evaluation rewards models with better

performance. For AP50 and AP75, the threshold is set to 0.5 and 0.75 for BBOX/segmentation predictions.

APS, APM and APL are about results regarding small, medium and large instances. Small

instances are defined as being with an area of 32×32 pixels. Medium instances are defined as being between

32×32 and 96×96 pixels in area. Large instances are defined as being an area larger than 96×96 pixels.
These definitions make a distinction between the object sizes. This is provided as some datasets,

such as COCO have an imbalance in object sizes. The definition of AP is given by

 (14)

where n is the number of classes within the dataset. tc and f c are true positives and false positives of

class c.

TABLE IV
EVALUATION ON SEGMENTATION AND OBJECT DETECTION

50

Method
Segm BBox

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

MRCNN [9] 0.148 0.260 0.141 0.050 0.036 0.174 0.132 0.258 0.119 0.150 0.091 0.138

Cascade MRCNN [11] 0.208 0.346 0.212 0.000 0.094 0.227 0.229 0.350 0.249 0.000 0.174 0.237

Mask Scoring RCNN [10] 0.138 0.248 0.136 0.117 0.070 0.148 0.126 0.241 0.109 0.300 0.097 0.131

Queryinst [17] 0.183 0.272 0.198 0.250 0.134 0.196 0.185 0.276 0.205 0.200 0.200 0.190

Instaboost [12] 0.223 0.369 0.218 0.125 0.134 0.240 0.226 0.372 0.239 0.300 0.232 0.228

Yolact [16] 0.191 0.296 0.202 0.200 0.127 0.204 0.190 0.302 0.204 0.100 0.236 0.195

Point Rend [13] 0.197 0.324 0.201 0.050 0.104 0.207 0.161 0.313 0.141 0.200 0.185 0.158

SOLO [14] 0.141 0.256 0.127 0.000 0.128 0.154 - - - - - -

SOLOv2 [15] 0.224 0.342 0.232 0.050 0.172 0.237 - - - - - -

SparseInst [31] 0.243 0.346 0.247 0.000 0.166 0.251 - - - - - -

Ours 0.335 0.451 0.374 0.021 0.204 0.353 0.350 0.453 0.411 0.067 0.325 0.351

C. Quantitative Evaluation

This section provides the instance segmentation results of marine animal detection and segmentation methods.

All experiments are evaluated on our recently collected undersea aquatic animals (UAAIS2K) dataset. To

quantitatively evaluate the results of object detection and sematic segmentation, average precision (AP) is

used to assess the performance for object detection and semantic segmentation.

We compare the performance between our proposed method with other state-of-the-art methods on the tasks

of object detection and semantic segmentation, respectively. The quantitative comparison of object detection

is summarised in Table IV with regard to AP , AP50, AP75, APS, APM , and APL. The following observations

can be drawn.

First, for the overall performance, our method outperforms other state-of-the-art methods for both object
detection and semantic segmentation by introducing cascade boosting, contrastive learning, and Seesaw loss.

Our proposed method can significantly improve instance segmentation performance in terms of AP , AP50,

and AP75. More specifically, our method can reach 35.0% of AP for object detection (bbox) and 33.5% of AP

for semantic segmentation (segm). For AP50, our method provides the best performance which are 45.1% for

bbox and 45.3% for segm. For AP75, our method also delivers the best results for bbox and segm, which are

37.4% and 41.1%, respectively.

TABLE V

PERFORMANCE ON SEGMENTATION AND DETECTION (BBOX/SEGM)

Classes MRCNN C MRCNN MS RCNN Instaboost Yolact Point Rend Queryinst Ours

Clupeid 0.135/0.129 0.18/0.154 0.121/0.152 0.249/0.262 0.16/0.158 0.113/0.162 0.177/0.171 0.293/0.28

Haddock 0.404/0.437 0.516/0.485 0.382/0.431 0.491/0.499 0.531/0.549 0.398/0.509 0.479/0.486 0.67/0.641

Prawn 0.336/0.256 0.373/0.277 0.325/0.265 0.408/0.301 0.397/0.281 0.325/0.269 0.327/0.248 0.444/0.326

Squid 0.001/0.002 0.179/0.161 0.02/0.019 0.071/0.084 0.034/0.034 0.036/0.061 0.192/0.202 0.326/0.338

Unk gadoid 0.137/0.159 0.258/0.205 0.154/0.16 0.325/0.299 0.274/0.288 0.206/0.265 0.227/0.239 0.384/0.398

Whiting 0.111/0.158 0.208/0.207 0.107/0.147 0.303/0.323 0.151/0.184 0.128/0.184 0.187/0.188 0.467/0.48

Cod 0.0/0.0 0.483/0.418 0.0/0.0 0.275/0.285 0.094 /0.09 0.098/0.122 0.019/0.02 0.783/0.764

Dab 0.601/0.628 0.694/0.677 0.598/0.626 0.683/0.695 0.652/0.71 0.604/0.699 0.678/0.69 0.79/0.755

Herring 0.05/0.063 0.016/0.011 0.0/0.0 0.017/0.034 0.0/0.0 0.001/0.005 0.029/0.026 0.053/0.041

Sole 0.349/0.456 0.533/0.563 0.311/0.388 0.583/0.632 0.412/0.473 0.463/0.579 0.303/0.31 0.786/0.794

Unk fish 0.043/0.036 0.08/0.037 0.044/0.038 0.091/0.073 0.123/0.109 0.071/0.095 0.105/0.098 0.199/0.176

Unk organism 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.003/0.003 0.003/0.003

Dogfish 0.0/0.039 0.126/0.099 0.006/0.019 0.017/0.013 0.0/0.0 0.081/0.107 0.188/0.192 0.288/0.289

Plaice 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.007/0.006 0.012/0.016

Sprat 0.021/0.052 0.074/0.085 0.0/0.0 0.152/0.103 0.083/0.052 0.032/0.066 0.028/0.025 0.046/0.036

Unk flat fish 0.019/0.05 0.079/0.066 0.036/0.048 0.055/0.082 0.219/0.197 0.08/0.106 0.114/0.13 0.17/0.145

Unk round fish 0.039/0.051 0.092/0.093 0.04/0.057 0.13/0.107 0.099/0.12 0.095/0.119 0.078/0.084 0.242/0.214

51

Second, for various classes, there are 17 classes out of total 17 classes achieving the best performance in our

method for both object detection (bbox) and semantic segmentation (segm). Our method has a superior

performance on the classes of haddock, cod, dab, sole. For instance, our method achieves 79.0% and 75.5%

on segmenting and detecting underwater animals while the second best result is provided by Cascade

MRCNN [11] which are only 69.4% of semantic segmentation and 67.7% of object detection. For

recognising the rest classes, our method can provide satisfactory results.

Third, for performance of APS, APM and APL, our method shows the best performance with regard to

APM and APL. For semantic segmentation, our method can achieve 20.4% for APM and 35.3% for APL
which is much better than MRCNN [9] whose APM and APL are only 3.6% and 17.4%. Although our

method does not provide the best performance of APS, small fishes will be normally released with considering

the sustainability of fishery industry.

D. Qualitative Evaluation

The qualitative results of instance segmentation are illustrated in Fig. 5, where various underwater scenes are

provided in different columns. In order to further illustrate the benefits of our proposed model, we provide

compelling visual results comparing various models. As shown in Fig. 5, our method demonstrates superior

performance yielding results that closely align with the ground truth, which performs well in diverse scenes.

It also notes that the our method can segment the details of boundaries well. In addition, compared to other

advanced models, the bounding boxes and segmentation maps of our model are with more complete objects

and accurate bounding boxes. Our model has less false detection and segmentation when comparing with

other methods who provide multi-boxes for the same object with some labels of wrong categories. Finally,

our model is robust to detecting fish and recognising their corresponding species in the middle and large size.

For instance, our method can accurately locate fish (i.e., bounding box and mask) and predict their species

as shown in the second and third column of Fig. 5.

E. Ablation Study

In this section, we analyse the contributions of various components of our method. Extensive exper- iments

are conducted to figure out their roles in our proposed method. The improvement of APbbox for object

detection and APsegm for semantic segmentation by considering one more component at each stage is

presented in Table VI, where Basline is MRCNN model; Boosting stands for instance-level boost; Cascade

stands for the introduction of Cascade mechanismSCL stands for Seesaw Contrastive Learning. We can see

that a poor performance of AP will be obtained with only 14.8% for APsegm and 13.2% for

52

Fig. 5: Visual comparison of various models. Our method is compared with a number of SOTA models and

groundtruth (GT). First row is the ground truth. Second row is instance segmenation performance of our

method (CBSC-Net). Third row is instance segmenation performance of Point Rend. Forth row is is

instance segmenation performance of QueryInst.

53

APbbox if simply using baseline model. If we introduce Boosting, it will bring the performance gain as 7.5%

of APsegm and 9.4% of APbbox with the help of instance-level boost. If we add Cascade mechanism, there is

a further improvement obtained for APsegm and APbbox, which are 3.3% and 4.8%, respectively. Moreover,

if SCL is introduced as well, a further gain can be obtained 7.9% of APsegm and 7.6% of APbbox. When all of

them are adopted in our method, we can achieve the best performance for both smantic segmentation and
object detection, 33.5% of APsegm, and 35.0% of APbbox.

TABLE VI

THE ABLATION STUDY ON VARIOUS COMPONENTS OF OUR METHOD

Baseline Boosting Cascade SCL APsegm APbbox

✓ 0.148 0.132

✓ ✓ 0.223 0.226

✓ ✓ ✓ 0.256 0.274

✓ ✓ ✓ ✓ 0.335 0.350

VI. FISH SIZING TECHNIQUE

A. Fish Size Estimation

Fish size estimation is a multi-stage process that accounts for potential differences between the number of

fish visible from the left and right camera positions. The first two stages involve post-processing steps to

refine the raw mask outputs from the network. Mask predictions are merged to eliminate cases where multiple

masks are predicted for a single fish instance. When Intersection over Union (IoU) score is 0.3 or above,

it will trigger merging. The merged instance is assigned a class label based on the maximum score of the

component masks and the combined area.

The second stage filters out isolated peripheral regions that may appear in masks. Each instance must be

attributed to a single, connected region of the image. Isolated areas, typically corresponding to fish fins

with low image contrast, are safely removed by applying a small area filter. This ensures that the resulting

mask corresponds to the main body of the fish.

Once the post-processing is complete, the sizing algorithm converts binary mask instances from both the left

and right cameras into contour representations. A best-fit ellipse is generated from these contours, and the

extrema on the major axes of the ellipses are identified as the ”head” and ”tail” points of each fish. This

ellipse-matching technique provides a stable method for locating corresponding points in space across the left

and right images.

Before sizing can occur, the sets of left and right ellipses need to be paired. The process considers the ordering

of ellipse centers from left to right on both sides, taking into account that fish appearing on the extreme left

or right may not be visible in the opposite camera. The resulting pairings are checked against an estimated

lateral shift between the left and right cameras, and any necessary reordering is performed to obtain a set

of ellipse pairings.

In the final stage, the ”head” and ”tail” points for each instance are projected to 3D space using stereoscopic

projection techniques and the recorded calibrations for both the left and right cameras. The Euclidean distance

between these projected points represents the estimated fish length.

B. Implementation Details of Fish sizing

The fish sizing algorithm can be summarised in six steps: Binary mask merging, contour extraction, small

area filtering, ellipse fitting, instance matching and point projection. Details of each stage follow along with

observations on future improvements.

1) Binary mask merging: The output of the prediction network provides a tensor of binary masks with
height and width matching that of the original input image (1536x2048) and a depth corresponding

to the number of detected fish. Occasionally, the network over-predicts by detecting the same fish

more than once. To compensate for this, we the IoU (Intersection over Union) is calculated for all

54

detected instances and those which overlap sufficiently (we use a threshold of IoU = 0.3). The species of

the merged mask is assigned to be that with the maximum confidence score.

2) Contour Extraction: We use the opencv findContours function applied layer-wise to convert each

binary mask layer to a list of coordinate sequences.

3) Small area filtering: The ellipse-fitting stage requires that we have a single contour for each fish

instance, but this is not the case in reality. In a small number of cases, the peripheral edges of a fin

are more visible under the light conditions and hence appear disconnected from the main body. The

simplest and most computationally effective way of dealing with this is just to use the contour that

corresponds to the longest sequence of coordinates from the previous step.

4) Ellipse fitting: We use the EllipseModel class from scikit-image to convert the sequence of points

for each detected instance to fit a corresponding ellipse. This proves to be a good method of

approximating the shape of a fish, although some exceptions are noted in the following section.

We guard against degenerate masks/contours by forcing an assertion that each contour should have

at least ten points - the ellipse fitting algorithm cannot find a unique ellipse if there are less than

five points. Where this test fails, twenty new points are uniformly resampled from the path described

by the contour and the algorithm attempts to fit a new ellipse. If this fails again, it is assumed that

the error occurs because the degenerate mask is co-linear and this detection is discarded as a false

positive.

5) Instance matching: All the previous steps are applied to both the left and right camera images so

that we have a list of ellipses for both sides. Each ellipse will correspond to an organism, but the

lists are not ordered in any canonical way. There may not even be the same number of fish visible

on both sides. To rectify this, we perform a transformation on the centre points of the ellipses of the

left camera which mimics a shift to the left caused by moving the camera in the right direction. In

effect, we want to create an overlay of the two images and identify each fish with its pair by looking

at closest pairs across images.

The magnitude of the shift differs depending on the distance of the fish in the depth direction - distant fish

are shifted less between cameras when compared to those close to the lens. For this reason, we decide to use

an average estimated shift. This, however, needs knowledge of matched pairs - what we are attempting to

do in this step. In order to achieve this an assumption is made. We assume that, when different numbers

of fish are detected on both sides, either the leftmost fish in the right camera or the rightmost fish in the left

camera drops off the field of view between shots. We discard the extra fish and reorder the fish ellipses by x-

coordinate of the centre before pairing and estimating the average lateral shift.

This process was tested empirically using generated data. Between 2 and 7 fish were generated using random

positioning and sizing and shifted to represent the opposite camera. Noise was added to the position in both

axis on the opposite camera to represent inaccuracies in the system, then the fish were reordered. The

algorithm could reliably recover the correct order and pair the fish correctly for a reasonable level of noise.

6) Point projection: We arbitrarily assign the leftmost extrema on the major axis of each ellipse as the

“head” and the rightmost extreme as the “tail”. Paired heads and tails are projected to points in 3D

space using standard stereoscopic projection techniques and the recorded calibrations for both the left

and right cameras. The Euclidean distance between these head and tail projections is the estimated

fish length.

C. Problem cases

We identify some problem cases where the sizing is either not possible or gives erroneous results. These are

detailed below, along with some possible solutions

• Partial view: The most common case is when we get a detection of the tip of a fish head or tail on

one side and a more complete view of the fish on the other side. While the algorithm can infer the

55

shape of the ellipse given a partial view, the accuracy of this decreases sharply when only a small area is

visible. A method to solve this would be to compare the ratios of area between left and right areas and

rejecting any sizing attempt where this lies outside of an empirically determined threshold.

• Fish too close: Where the fish is too close to the camera in one or both shots, the projection part

of the algorithm becomes highly sensitive to error and/or cannot get a complete view of the fish to

be able to accurately estimate the ellipse. In this case, a threshold can be created to ignore the cases

where a single instance takes up more than a given proportion of the field of view. Some further

experimentation or alignment with the goals of the SmartTrawl project can help in this case if it can be

determined that this only occurs in cases where we either want to always accept or always reject the

catchment.

• Turning fish: Where the fish is turning or contorting, the ellipse template does not fit well, but also the

projection in space will be shorter than the length of the fish as it becomes curved in space. There

is no real solution to this, but it seems to be a relatively rare occurrence.

• Bad angle: In some cases, where the fish is laying in the depth dimension of the field of view, it

is possible for the matching algorithm used to pair instances on left and right sides and subsequent point

location to falter. The former can be solved by a more robust matching to take this into account,

although lack of accuracy in the depth dimension may still remain an issue.

The suggested solutions have a very small overhead, but will have a significant positive effect on the accuracy

of the overall project. Further large-scale analysis to determine the frequency of occurrence of these problem

cases when compared to the ideal case is necessary. A tentative qualitative observation is that the partial

view happens quite often which can be solved with a faster image retrieval and detection process in

order to be able to capture most/all organisms that pass through the aperture.

VII. CONCLUSION

In this work, we make substantial strides in underwater aquatic animal instance segmentation, providing a

valuable dataset and an effective model that contribute significantly to the field of sustainable fishing

practices.

Firstly, we have constructed the first undersea aquatic animals (UAAIS2K) dataset specifically tailored for

trawl scenarios, providing rich aquatic animal images with comprehensive object-level and pixel-level

annotations. This dataset supports various tasks such as object detection, semantic segmentation, and instance

segmentation, thereby facilitating the development of effective underwater animal detection and

segmentation techniques. Additionally, the dataset includes diverse underwater fishing scenes and paired

stereo camera images, offering potential utility for fish size estimation. These distinctive features set

UAAIS2K apart from existing datasets and greatly contribute to the advancement of sustainable fishing

practices.The new progress of data collection and annotation is presented.

56

Furthermore, we propose a novel seesaw contrastive learning framework and integrate it seamlessly with a

cascaded network architecture and instance-level data boosting. Our proposed model, CBCS-Net, proves to

be an effective solution for aquatic animal instance segmentation. This integration harnesses the synergy

among these components, resulting in superior detection and segmentation performance. Through extensive

experiments, we demonstrate that CBCS-Net surpasses the performance of 10 state-of-the-art instance

segmentation models, establishing its efficacy in undersea instance segmentation.

In addition, the fish sizing technique is discussed, where the overall framework of fish size estimation is

discussed first. Then, the implementation of fish size estimation is discussed in detail. Moreover, some

challenging cases are presented and discussed as well.

REFERENCES

[1] P. G. Fernandes, K. Coull, C. Davis, P. Clark, R. Catarino, N. Bailey, R. Fryer, and A. Pout, “Observations of discards

in the scottish mixed demersal trawl fishery,” ICES Journal of Marine Science, vol. 68, no. 8, pp. 1734–1742, 2011.

[2] C. Li, R. Cong, S. Kwong, J. Hou, H. Fu, G. Zhu, D. Zhang, and Q. Huang, “Asif-net: Attention steered interweave

fusion network for rgb-d salient object detection,” IEEE transactions on cybernetics, vol. 51, no. 1, pp. 88–100, 2020.

[3] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, and D. Tao, “An underwater image enhancement benchmark dataset

and beyond,” IEEE Transactions on Image Processing, vol. 29, pp. 4376–4389, 2019.

[4] L. Li, B. Dong, E. Rigall, T. Zhou, J. Dong, and G. Chen, “Marine animal segmentation,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 32, no. 4, pp. 2303–2314, 2021.

[5] M. Palmer, A. Á lvarez-Ellacur´ıa, V. Molto´, and I. A. Catala´n, “Automatic, operational, high-resolution monitoring of fish

length and catch numbers from landings using deep learning,” Fisheries Research, vol. 246, p. 106166, 2022.

[6] M. Pedersen, J. Bruslund Haurum, R. Gade, and T. B. Moeslund, “Detection of marine animals in a new underwater

dataset with varying visibility,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops, pp. 18–26, 2019.

[7] P. G. Fernandes, P. Copland, R. Garcia, T. Nicosevici, and B. Scoulding, “Additional evidence for fisheries acoustics: small

cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys,” ICES Journal of

Marine Science, vol. 73, no. 8, pp. 2009–2019, 2016.

[8] X. Yu, Y. Wang, J. Liu, J. Wang, D. An, and Y. Wei, “Non-contact weight estimation system for fish based on instance

segmentation,” Expert Systems with Applications, vol. 210, p. 118403, 2022.

[9] K. He, G. Gkioxari, P. Dolla´r, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on

computer vision, pp. 2961–2969, 2017.

[10] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring r-cnn,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[11] Z. Cai and N. Vasconcelos, “Cascade r-cnn: High quality object detection and instance segmentation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, p. 1–1, 2019.

[12] H.-S. Fang, J. Sun, R. Wang, M. Gou, Y.-L. Li, and C. Lu, “Instaboost: Boosting instance segmentation via probability

map guided copy-pasting,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 682–691, 2019.

[13] A. Kirillov, Y. Wu, K. He, and R. Girshick, “Pointrend: Image segmentation as rendering,” in Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pp. 9799–9808, 2020.

[14] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “SOLO: Segmenting objects by locations,” in Proc. Eur. Conf. Computer

Vision (ECCV), 2020.

[15] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and fast instance segmentation,” Proc. Advances in

Neural Information Processing Systems (NeurIPS), 2020.

[16] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo, “Enhancing geometric factors in model learning and

inference for object detection and instance segmentation,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8574–8586, 2021.

[17] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng, and W. Liu, “Instances as queries,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6910–6919, October 2021.

[18] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 7263–7271, 2017.

[19] C. Rasmussen, J. Zhao, D. Ferraro, and A. Trembanis, “Deep census: Auv-based scallop population monitoring,” in

Proceedings of the IEEE international conference on computer vision workshops, pp. 2865–2873, 2017.

[20] E. Hossain, S. M. S. Alam, A. A. Ali, and M. A. Amin, “Fish activity tracking and species identification in underwater

video,” in 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 62–66, 2016.

[21] R. Prados, R. Garc´ıa, N. Gracias, L. Neumann, and H. Va˚gstøl, “Real-time fish detection in trawl nets,” in OCEANS

2017 - Aberdeen, pp. 1–5, 2017.

57

[22] S. Villon, M. Chaumont, G. Subsol, S. Ville´ger, T. Claverie, and D. Mouillot, “Coral reef fish

detection and recognition in underwater videos by supervised machine learning: Comparison

between deep learning and hog+ svm methods,”

[23] S. A. Siddiqui, A. Salman, M. I. Malik, F. Shafait, A. Mian, M. R. Shortis, and E. S. Harvey,

“Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network

models to compensate for limited labelled data,” ICES Journal of Marine Science, vol. 75, no. 1, pp.

374–389, 2018.

[24] Z. Shen and C. Nguyen, “Temporal 3d retinanet for fish detection,” in 2020 Digital Image Computing:

Techniques and Applications (DICTA), pp. 1–5, 2020.

[25] Z. Zhao, Y. Liu, X. Sun, J. Liu, X. Yang, and C. Zhou, “Composited fishnet: Fish detection and species

recognition from low-quality underwater videos,” IEEE Transactions on Image Processing, vol. 30, pp.

4719–4734, 2021.

[26] J. H. Christensen, L. V. Mogensen, R. Galeazzi, and J. C. Andersen, “Detection, localization and

classification of fish and fish species in poor conditions using convolutional neural networks,” in 2018

IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pp. 1–6, 2018.

[27] G. French, M. Mackiewicz, M. Fisher, H. Holah, R. Kilburn, N. Campbell, and C. Needle, “Deep

neural networks for analysis of fisheries surveillance video and automated monitoring of fish

discards,” ICES Journal of Marine Science, vol. 77, pp. 1340–1353, 08 2019.

[28] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual

features by contrasting cluster assignments,” 2020.

[29] J. Yu, J. Yao, J. Zhang, Z. Yu, and D. Tao, “Sprnet: single-pixel reconstruction for one-stage

instance segmentation,”

IEEE transactions on cybernetics, vol. 51, no. 4, pp. 1731–1742, 2020.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical

image database,” in

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 248–255, Ieee, 2009.

[31] T. Cheng, X. Wang, S. Chen, W. Zhang, Q. Zhang, C. Huang, Z. Zhang, and W. Liu, “Sparse

instance activation for real-time instance segmentation,” in Proc. IEEE Conf. Computer Vision and

Pattern Recognition (CVPR), 2022.

58

Milestone 4: Six days of field trials in Shetland

Smartrawl: Shetland field trials November
2023

14th- 17th November 2023

By: Rosie Ashworth

Introduction
Smartrawl is an in-water discard and bycatch reduction device for demersal fishing trawls,
allowing for a species-specific catch and the release of all unintentional catch back into the
marine environment. The system is comprised of three components; a stereo camera integrated
with AI algorithms to identify and size fish and a patented gate system. The stereo camera,
positioned in the trawl extension obtains high-quality images of fish passing through into the cod
end. Images obtained are then analysed utilising AI algorithms by an onboard computer to
determine fish species and size. Upon classification, a signal is sent to the gate component which
is also positioned in the trawl extension to either catch or release fish. When the camera and AI
system identify non-target species or protected species, a signal is sent to open the gate, allowing
for fish or other marine species to be released back into the marine environment. However, if a
commercially targeted species of legal size is identified, a signal is sent to close the gate, ensuring
fish transverse into the cod end to be landed.

Previous field trials have been conducted to test and obtain high-quality images from the stereo
camera in 2022.

This report provides details on the field trials of the gate component carried out between the 14th
and 17th of November 2023 in Scalloway, Shetland aboard research vessel Atlantia II operated by
University of Highlands and Islands (UHI) staff. Pre-trial objectives were determined to test the
gate functionality by obtaining video footage during tows of the gate fixed in both catch and

Drone image taken during trials – Nick McCaffrey

59

release mode along with gate rotation. Additionally, the operation of the new latch mechanism
was tested.

Aim and pre-trial objectives

Aim
To obtain video footage of the Smartrawl gate in operation.

Specific objectives
1. To obtain video footage of the Smartrawl gate whilst fixed in release mode. Camera

orientated towards the open door. Take care to ensure the footage is clear and video has
been recorded (last time kept switching to time-lapse). Ideally in an area where might
expect high bycatch (long tow time ~ 30 mins).

2. To obtain video footage of the Smartrawl gate whilst fixed in catch mode. Camera
orientated towards open quadrant. In areas where expect high catches of cod (but only
need to have short tow time ~ 15 mins).

3. To obtain video footage of the latch in operation at multiple depths. Gate in free mode,
camera orientated towards latch, the cod end can be opened to avoid catch.

4. To obtain video footage of the gate in rotating mode to see if it does rotate. To adapt as
necessary (e.g. higher speeds, open cod end, bend part of structure into shape etc.). Need
only be short tows and can be close to the surface.

5. If 4 successful, then get video footage of the gate rotating and then stopping as a result of
the latch engaging.

6. If time permits, get more camera footage in various areas with different
fish/shellfish/elasmobranch compositions (~1 hour tows). Gate in catch mode. Enumerate
catch (length frequency of catch by species) to compare species and length compositions
between camera and trawl catch.

60

Day 1 – 14th November 2023
The Smartrawl gate was retrofitted within the extension section of the demersal trawl net and the
Catchcam system (composed of an underwater camera and a torch) was set up and attached to
the net to face the base of the gate in order to provide a whole view of the gate. Tow 1 lasting 30
minutes was then completed in Scalloway Deeps (~50m depth) with the gate fixed in release
mode by cable ties. During this tow, video footage was recorded using the Catchcam system. The
latch was not set up and GoPro was not mounted. A review of video footage obtained by
Catchcam revealed that upon submersion the gate doors collapsed inward towards the gate
centre (Figure 1). The aluminium gate doors appeared too weak and folded as seen in Figure 6.
Video footage can be located in Smartrawl library.

Figure 6 – Image of gate door bent inwards upon submersion.

Upon the haul of the trawl net and gate, the doors were visibly bent inwards along with two large
sections of blue radial fins missing at the top section of the cone and a section of aluminium
bordering had been detached. Further inspection revealed the majority of the radial fin segments
on the cone had become loose as the glue had unstuck. All are displayed below (Figure 7).

61

Figure 7 – Images of faults post haul of Tow 1. Left – displaced bordering, middle – detached
radial fins, right – bent doors.

Day 2 – 15th November 2023
AM:

The morning of day 2 was spent making repairs to the gate in order to fix issues encountered on
Day 1. To increase the stability and strengthen the gate doors an internal metal ring was fixed to
the base of the doors using three bolts on each door (Figure 8). To secure the radial fins in place
within the metal bordering, long bolts were inputted along the whole circumference (Figure 8).
New fixtures strengthened the gate as a whole. Upon test rotation on the pier, several bolts
created friction between the bolt top and supporting rods. These bolts were then shaved down to
prevent friction upon rotation.

Figure 8 – Gate repairs. Left – addition of metal internal ring to strengthen doors with three bolts
secured per door. Right – Long bolts placed through metal bordering and radial fins along the

whole circumference of the cone.

62

After the gate was repaired, two torches were angled on the shaft positioned at doors to allow
illumination to scatter across escape panels. A GoPro was also mounted on the base of the gate
(Figure 9). Videos were taken in 4k video resolution.

Figure 9 – Two torches and a GoPro were set up at the base of the gate. Torches cable tied to
shafts with sponges to angle torches.

PM:

A total of 4 tows were carried out in the PM.

Tow 2 and Tow 3 were both completed in Hamnavoe as drone footage was being taken. As a
result, the net and gate remained close to the surface to allow for the drone to get close-up
videos and photos of the gate in the water (Figure 5).

Tow 2 – During this tow, the gate was unhinged, and the gate was seen to visibly rotate during
the haul. Videos were obtained via Catchcam.

Tow 3 – Drone footage was taken again during this tow for communications purposes (Figure
10). During this tow, the gate was fixed in release mode with cable ties and the Catchcam was
on. Videos were obtained via Catchcam.

63

Figure 10 – Pictures taken from drone footage.

Tow 4 – Tow 4 was completed in Scalloway deeps with the gate fixed in release mode. This tow
occurred at approximately 50m depth for 30 minutes. The Catchcam and GoPro were obtaining
footage and two additional torches were fixed to the shaft to provide additional light.

Tow 5 – Tow 5 was also completed in Scalloway deeps. During this tow, the gate was fixed in
catch mode. This tow occurred at approximately 50m depth for 15 minutes. The Catchcam and
the GoPro were on, along with two additional torches mounted onto the shaft. Upon haul and
opening of the cod end revealed the capture of a juvenile flapper skate (Figure 11). This skate
was then measured and tagged and returned to sea. The catch of this tow was weighed and
measured (Table 2). A total of 7 different species were caught including Haddock, Whiting,
Monkfish, Plaice, Lemon sole, Flapper skate and Squid (Table 2).

64

Figure 11 – Image of the dorsal side of a female juvenile flapper skate.

Day 3 – 16th November 2023
On day 3, the lithium battery for the latch was inputted into the battery holder on the gate and
the latch was tested on the pier (Figure 12). Clear instructions provided by engineers at the
National Robotarium were followed to set up the latch system. Battery lights and the battery
system were seen to be functioning; however, the latch was not moving. Engineers from the
National Robotarium were then consulted, and a Multimetre Tester was used revealing the
battery component was working but not the latch. As a result, the latch could not be tested
during tows, however, the gate rotation could still
be tested by fixing the latch to disengage.

Figure 12 – Image of battery system positioned
next to the top end of the gate and latch.

65

Tow 6: On day 3, two tows were completed. Due to day 2 revealing gate-free spinning upon
hauling, the gate rotation was tested during tow 6. The Catchcam and GoPro were recording
during the tow. The net was shot at 50m depth for 15 minutes. At the surface the gate was seen
to rotate while the boat was traveling at 5.3 knots, and upon submersion and with the speed
decreased the gate was seen to rotate once fully submerged at 4.3 knots. Despite the latch not
functioning, clear footage of the gate rotating was recorded.

Tow 7- Tow 7 was completed at Scalloway deeps at 53m depth for 30 minutes with the gate fixed
in release. Both Catchcam and GoPro were used to record video footage. Upon video review, no
footage was recorded on GoPro.

Tow 8 – Tow 8 was completed at the Side of Skleld at 21m depth for 20 minutes with the gate
fixed in release. Both Catchcam and GoPro were used to record video footage.

Tow 9 – Tow 9 was completed at Scalloway Deeps at 51m depth with the gate unhinged. The
Catchcam and GoPro were used to record footage of the gate rotating. High speed was used
during this tow to trial rotation, however, trawl wires broke as a result of the increased speed.
This tow was then abandoned.

Results
Table 1 displays details from each tow carried out during the trials, with a total of 9 tows
completed over the 4 days.

Table 1 - Table of Shetland Trial 2023 tow data.

The footage was mainly obtained with the gate component fixed in release mode, however when
fixed in catch mode in tow 5 the species caught were identified, measured and weighed (Table
2). A total of 7 species were identified with haddock and whiting making up the majority of the
catch.

66

Table 2 – Catch data from Tow 5—gate in catch mode.

Conclusion
Upon completion of gate field trials, pre-trial objectives 1, 2, 4 and 6 were achieved, despite some
early gate failures in tow 1. A large amount of video footage was obtained with the gate fixed in
release and catch mode. The Catchcam and GoPro footage provided two different fields of view
of the gate system, along with obtaining footage of different fish and elasmobranch compositions
including recording flapper skate and thornback rays. Objectives 3 and 5 were not met due to the
latch malfunctioning, and as a result, the latch could not be tested at depth. However, despite
the latch malfunction, objective 4 was successfully met with video footage obtained of the gate
rotation particularly upon haul and at speed (4.3-5.3 knots). These trials provided clear evidence
of fish and other species assemblages being either effectively caught or released by the
Smartrawl gate with minimal injury or contact with the gate. The gate can freely rotate fast when
pulled at speed, however, alterations to the design and robustness are required for future trials.
Upon completion of these trials, engineers were able to inspect the latch and discovered loose
cabling caused the latch malfunction. This has now been fixed and the latch system is awaiting
further trials in June. The gate component is also being modified to increase its strength and
secure radial fins to ensure gate rotation and robustness at sea/depth.

Acknowledgements

Thanks to Shaun Fraser (Senior Fisheries Scientist UHI), Kenneth Pottinger (Skipper), Davie Riley
(Fisheries Technician and Crew) and Sarah Ayres (Fisheries Research Assistant).

67

Milestone 5: Smartrawl 5.0: AI Component Final Report
Dewei Yi, Chris Moorhead, Yiren Li, and Paul G. Fernandes

June 2024

 1. Overview

This project report presents a comprehensive study on developing and enhancing methodologies
for identifying and sizing commercial fish species using advanced AI algorithms. The report is
structured into several key sections in the rest of this report. Each section focuses on a critical
aspect of the project, from data collection to performance improvements and practical
implementation.

 2. Building Dataset for Commercial Fish Species
After huge amount of work for the data processing, we extract data for nine commercial fish
species. Qualified ichthyologists individually labelled the individual fish species, and an external
cleaning process was undertaken beforehand to eliminate mislabelled and empty images. The
final dataset includes a set of nine fish species swimming in water tanks, making a total of 2918
fish, taken at various angles, positions, and obstructions. Each image tries to contain a single fish
instance, meaning most images contain only one fish per image. The species and amount of fish
in the training and test set include 414-115 Cod, 8-1 Dogfish, 73-19 Flatfish, 163-175 Haddock,
16-2 Herring, 43-11 Monkfish, 125-33 Prawn, 9-4 Saithe and 899-208 Whiting, taken at a
consistent resolution of 2048 by 1536 pixels, with varied lighting effects by mimicking effect of
sunlight underwater to create instances of deep shadow. This imbalanced the dataset, which will
be addressed in the implementation stage through additional data augmentation prioritisation of
complex classification cases. The range of fish provides diverse colour and shape variations,
ensuring robustness and differentiation between classes. All images are relevantly labelled and
separated into training (2350 fish) and test sets (568 fish). This dataset is an excellent option for
identifying fish species due to its direct capture of a natural working environment; by taking
pictures of fish captured from the sea, the instance segmentation model learns on a closely real-
life simulated environment, making it a logical conclusion in increasing generalisation capability.
Initial data augmentation for the training and test set will be taken from base file configurations
as presented for each model in MMDetection, which were configured in the best interest to serve
as a standardised starting point [9]. Adaptations will be introduced to the training and testing
process as the project progresses to extract essential information better and personalise results.
To follow ethical guidelines in line with this project’s aim for sustainability in fishing practices, the
fish are taken and released, meaning no harm is done to them during the process. Moreover,
some examples of these nine commercial fish species are provided in Fig. 13

68

Table 3: Distribution of Fish Species in Training and Test Sets

Species Training Set

Test Set

Cod 414 115
Dogfish 8 1
Flatfish 73 19
Haddock 163 175
Herring 16 2
Monkfish 43 11
Prawn 125 33
Saithe 9 4
Whiting 899 208

 3. Installation and Usage Instructions
Documentation is provided here for installation of prerequisites to run the existing A.I. algorithm
and any subsequent updates. There are varying considerations that must be taken into account,
or may simply be useful background, for prospective users who are non-experts:

• Windows vs Linux OS: In general, most things work the same on either operating system. The
algorithm is written on/for Linux, however, and some few lines of code are different between the
two.

• Inference vs Training: Inference allows processing of images based on a model1 that can be
provided by the user and a source of images. Training has a much greater set of requirements and
allows for the creation of new models using new data.

• CPU vs GPU: The algorithm itself runs on either, but the prerequisites are slightly different for
GPUs. Inference will run close to real time on CPU (0.5 image pairs per second) and much faster
on GPU, but training cannot be done using CPU alone. The time above includes saving annotated
side-by-side comparisons of each image to the results directory.

• Command Line vs Application: It is necessary to use command line and virtual environments
during installation and running. Explanation, justification and useful commands are given later.

1 The model is the neural network that the main A.I. component of the algorithm. It is just

one ingredient in a larger framework. Models come in various structures, but each structure

has a capability to be trained on different data.

69

 (a) Cod (b) Herring (c) Whiting

 (d) Haddock (e) Saithe (f) Prawn

 (g) Monkfish (h) Dogfish (i) Flatfish

Figure 13: Nine species occurring in the dataset

• Jetson Nano Orin vs Workstation: Note that the Jetson Nano Orin has a completely different
computer architectures compared to most computers (AARCH vs AMD) and it has its own version
of Linux called Tegra, also known as Jetpack. The version we employ on workstation is designed
to have as minimal differences, so the working copy requires more specific version to be
installed.

3.1 Inference Only
The following instructions are for inference on CPU only. It would be preferable, but not necessary,
to run with a GPU. Changes for this case are described afterwards.

3.1.1 Installation (CPU)

The following installation was made on a Windows system.

Install Conda

Conda is a package manager that allows us to create a virtual environment that allows
packages to be installed in isolation without affecting the main version of Python. This is
important because we will need to be able to separate environments for the inference and data
preparation stages of training. Installation instructions can be found here. Some extra notes:

• Miniconda is the recommended option.

• This will be installed to the user. If your PC has multiple user profiles, it won’t be available to
others. This applies for everything at the installation stage.

https://docs.conda.io/projects/conda/en/latest/user-guide/install/windows.html

70

• You may see a box with the option ”Add to PATH”. This must be ON. • To test, go to the directory
you want to keep your project. Type cmd and ENTER into the address bar of the window. This will
open a command line interface at that location. Any command window will work, but we will
require this location for later installation steps.

• In the command window type: conda list

And press ENTER. This should show conda options and will be evidence of installation.

• If this is not the case and you get “conda not recognised”, you may need to add conda to the
Environment Variables (add to PATH). The location of conda you need to add will be in
C:Users/username/AppData/anaconda3 or similar.2

Create conda environment
Now we need to create the environment which will hold all our packages. In the command

window in the desired location from above we need to type and enter:

conda create --name smartrawl python=3.8

The word following smartrawl can be whatever you wish. We are constrained to use Python 3.8 on
the Jetson device, so we need to specify this earlier version. We need to activate this environment
with the following:

conda activate smartrawl

Or equivalent. The command window should show the name of the activated environment to the
left. You may test to see if Python is available by typing python and enter. This will give you
interactive version of Python where you can give line by line instructions. Exit using the exit()
command and ENTER.

Note that the activation of the conda environment MUST be done every time we are using
the program or making installations

Download MMDetection
We need to now download the MMDetection framework that controls the object detection

portion of the algorithm. This has the code for loading, training

2 If you have only use-level access, it may be the case that this location is hidden to you by the

administrator. To avoid problems, install at the default location.

https://learn.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)

71

Figure 14: MMDetection github repository

and using the neural network model and is a flexible and widely-used pipeline for the computer
vision available on both Linux and Windows systems. The github repository can be found here.

The whole thing can be downloaded as a zip using the code button at the top right. Unpack this
zip file and organise how you wish. This will be the main project directory where we must place
the remaining components.

Place additional files

Figure 15: Necessary components to be able to run the code. Yolact efficientnet contains the
example model .pth and .py config files. The current model may have a different name like rtmdet

https://github.com/open-mmlab/mmdetection

72

The following files are needed to run the algorithm:

• sizing module.py: Contains the main code that runs the simulation and processes the images.

• sizing toolbox.py: Contains code snippets for different steps of the sizing and error correction.

• cvis.py: Contains tools for custom visualisation of the results.

• Model and config file: This will be a sub-directory of the main project directory that contains a
model (with extension .pth) that is the structure and trained weights of the neural network and
the configuration file (with extension .py). The latter is a requirement of the MMDetection
framework that instructs it how to use the model.

• Simulation directory: Contains sub-directories “left” and “right” which have matching images
for the left and right cameras. This is the default location for the simulation image capture
process.

• Camera calibration file: Create a sub-directory of configs called “stereo cam”.
Inside this directory, place the “stereo calibration.npz” file.

Install packages

We need to install the packages in the environment. If not already open from the previous step,
open the command line from the main directory using the instructions in 2.1.1, note 4.

Install the packages using the following commands:

pip install torch==1.13.1 torchvision==0.14.1

pip install -U openmim

mim install mmengine

pip install terminaltables

pip install pycocotools
pip install shapely

pip install scikit-image

pip install mmcv==2.0.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch1.13/index.html

These are versions compatible with Python 3.8 and mirror those available on the Jetson Nano
Orin. These will take some time to install.

3.1.2 Installation (GPU)
The installation for a machine with GPU3 differs only in a few key aspects. Follow all steps as
above with the following differences.

• CUDA: Used to interface with the GPU hardware. This needs to be installed separately using the
following instructions. We have used CUDA 11.6 for the current project. This is done either before
or after installation of conda, but prior to installing pytorch in the next step.

• pytorch: The first line of the package installation in 2.1.5 must be amended to:

conda install pytorch==1.13.1 torchvision==0.14.1

 pytorch-cuda=11.6 -c pytorch -c nvidia

3 Note that GPUs must be made by NVIDIA as others are not compatible with the installed tools.

https://developer.nvidia.com/cuda-11-6-0-download-archive

73

All in one line

• mmcv: Similarly the address in the last step must be amended to:

https://download.openmmlab.com/mmcv/dist/cu116/torch1.13/index.html

Apart from these two exceptions, follow the same steps as 2.1.2 ”Install packages”.

The installation can verified by entering the following in command line:

python import torch torch.cuda.is_available()

This should provide an output of “True”. Close using exit(). If it is “False”, it means that Python isn’t
communicating with the GPU and will require further troubleshooting.

3.2 Usage
The following are instructions on how to use the algorithm to perform the detection and sizing of
paired fish images.

Activate environment

Navigate to the main directory and open a terminal. Activate the conda environment using:

conda activate smartrawl

Or whatever name was used during setup.

Place files

For the full algorithm, including sizing, place the images from the left and right cameras into the
subdirectories “left” and “right” found in the simulation directory in the main directory.
The left and right sequences must contain matching images only i.e. there cannot be image IDs
that exist in the left directory and not the right directory, or vice versa.

Edit Python File

The python file containing the algorithm has a number of constants listed under “SET-UP“. These
can be modified to change the default behaviour. The most useful is to be able to change the
SOURCE directory to another that contains a dataset with matching left and right images in
similarly named subdirectories.
If you don’t want to modify these, skip to the next step. It may provide useful context for any
potential troubleshooting. The following are a list of the modifiable parts of the algorithm that you
may or may not wish to modify for simulation purposes.

• SOURCE: This is the path of the root directory containing the left and right directories of paired
test images. By default it is the “simulation” subdirectory.

74

• CAPTURE TIMEOUT: Number of seconds before the detection process closes down because
the cameras have stopped recording. In the simulation this will be when the image sequence is
fully processed. By default this is 5 seconds.

Figure 16: SET-UP section to the sizing module.py that needs to be edited for custom use

• CAPTURE RATE: Number of seconds between image capture instances. The module should
function at a rate faster than 0.5 seconds per image capture. This is initially very fast (0.005
s/image) in order to test the speed of the system and determine a capture rate that is appropriate
for the current system and settings e.g. it will run a faster speed when we don’t need to save
annotated images. It will load up a number of images and then process them.

• DETECTION THRESH: The detection threshold below which any suspected objects will be
rejected. This mainly prevents the occurrence of a multitude of low-confidence predictions in the
region of less than 10% likelihood which would otherwise need to be removed in postprocessing
the predictions prior to the sizing algorithm.

• MODEL CONFIG: The path to the model’s config file. This will remain fixed unless you are training
your own or passed a different model at a later date.

• MODEL WEIGHTS: The path to the trained model weights. This will remain also remain fixed.

• LOG DIR: Path and name of .csv file used for logging results.

• CALIB PATH: Path to the calibration file. The calibration .npz file should be here.

• SIZER: Sizer object needed for fish size estimation using FishFitter class. This is what takes in the
lens properties found in the above calibration path in order to make stereo projection and size
estimates.

• VERBOSITY: Default value for seeing output in colour of the various processes in the algorithm.
In effect, this overrides the –verbose flag we will describe in the next section by setting it to always
be on.

• SCALE: This is the size of the images that will be loaded and annotated by the algorithm. By
default, this is 0.4, which proved to be a suitable factor of down-scaling without loss of accuracy
in species detection or sizing. The input to the object detection network is of fixed size and a
reshaped version of the initial image captured by the camera. Processing a smaller-scale version
greatly improves the speed of the system.

• LEFT SIM, RIGHT SIM: The name of the subdirectories of SOURCE where the left and right
camera image sequences will be found. Only used in the simulation and are “left“ and “right“ by

75

default. These can be overridden to specify locations in a different file structure than the default
one. Otherwise they are automatically expected as sub-directories of SOURCE called “left” and
“right”.

• BOOT IMAGE: The path of the initial image to be processed in order to ”warm up” the system and
only begin the main image capture and sizing algorithms until after the model has been
successfully loaded. On the Jetson Nano Orin, this takes considerably longer than on a
workstation.

• GTS ROOT, LEFT GTS, RIGHT GTS: GTS are the ground-truth species labels from the json files if
the images have been previously annotated using the labelme tool. See the –gts flag in the next
section for more details,

Running the code

Activate the environment named in the initial setup and run the script using: python

sizing_module.py --sim

Optional flags can be added to this. The possible options are defined as follows:

• --sim: Used when the camera module is not present and will source data from the SOURCE path
defined in the code.

• --vis: Used if we wish to save the left and right images with class and size detections. Outputs
found in the “result” subdirectory of the main directory.

• --logall: While the module will always create a .csv file with detections and sizes, the default
behaviour is that it will not record cases where no fish are detected on one or more sides. –logall
will record results for all frames.

• --verbose: When this flag is used, each concurrent subprocess will give output to the screen in a
different color.

– Red: Shows the filename of the image being loaded.

– Blue: Shows the images waiting in queue to be processed by the object detection algorithm.

– Green: Shows the results of the detection process.

– Yellow: Shows the queue for the sizing process and the results of the steps in the algorithm.

– White: General output generated by the default algorithm without the –verbose flag.

• --gts: Will add a column to the .csv file that shows the ground truth labels for the species of the
fish on left and right sided. If corresponding .json files do not exist, this will be ignored.

If you want to have visualisation, for example, use: python sizing_module.py --sim --vis

Alternatively, for no visualisation and a record of all images whether they contain fish or not, and
showing the steps in the algorithm as output, use:

python sizing_module.py --sim --logall –verbose

76

View results

The results will be saved in the “results” sub-directory of the main directory. They will be inside
“vis” and a sub-directory generated from the date and time of running. The log file will be saved
here (see next section).
If the –vis flag is used, three sub-directories can be found here:

• NO DETS: This will store all images where no detections are made.

• PART DETS: This will store all images where only one side of the camera detects any fish.

• STEREO DETS: This stores all images where at least one fish is detected on both sides. Two
subdirectories are also created TOO LARGE and TOO SMALL which will contain degenerate
cases for when the size estimates are too large or two small. The default sizes for these will be
greater than 100cm and smaller than 10cm.

3.2.1Note on CSV log
The detections for paired left and right images are recorded in detections.log each row will be in
the following format:

0 D20231020-T163304.987 1 haddock 0.9108 haddock 0.9628 61.556

The following table shows how to interpret each row of the CSV for N detected objects: Each row
begins with the image ID, datetime (also the same as the image filename) and number of detected
instances. This is followed five entries for each detected instance which correspond to the label
and confidence scores for the left and right images and the size for that instance. When –logall is
selected, the number of instances and left/right labels will be left empty in the relevant fields.

77

If the --gts flag is used and where labels exist, an extra column or extra columns will be added to
show a comparison with the ground truth labels.

3.3 Training
We do not provide detailed guidance for how to do this, but a record will be given for the sake of
recommendations for future work in the project. Here are important points to consider:

• Data Preparation: There is substantial data preparation involved before it can be used to train a
network. The steps would be:

1. Label species and contours of each fish using the labelme tool.

2. Filter the images from left and right size so we have only instances where each pair has a
corresponding opposite. Mismatches may occur because the left and right images are generally
labelled separately or one side has no fish visible. It also flags any labels which have a small
number of contour points that may require relabelling. An existing script called clean data.py will
do this.

3. Combine the individual .json files containing the original labels into a single, curated .json file in
COCO format. This is the format required by mmdetection for training.

4. Curate the training data to only include species of interest and correct any labelling errors as a
result of typos or combination of merging classes eg. plaice and sole are relabelled flatfish. There
is an existing script that does this and the previous step called filter st species.py. This is also use
to split the data into training and test sets.

• Same Species: The same .pth model file and config file can be used to retrain or fine-tune the
network with new data.

• New Species: Increasing the number of species will require a change in parameters in config file.
The output of the model produces a “scores” vector which will be of length N where N is the
number of fish species being predicted. If the number of species is different, the structure of the
network needs changing. Some other training parameters may need changing in the config file.
The names of each class will need editing too.

• GPU Usage: Training needs access to a GPU made by NVIDIA in order to be able to use CUDA
required by mmdetection for acceleration. If no workstation is readily available, a cloud
computing service like Google Colab can be used at economical cost.

• Training Script: Colab would require steps similar to our installation instructions for inference
on GPU so that the relevant package versions align with those required for the algorithm. An
example of using mmdetection to train can be found here. See the “Open in Colab” at the top.
This shows the installation steps and the full training process.

• Data Upload: The training data must be uploaded from local device to the cloud. This can be
done by mounting a GDrive or other methods.

Details of any of these can be provided for future contributors.

https://github.com/open-mmlab/mmdetection/blob/main/demo/MMDet_Tutorial.ipynb

78

3.4 Extracting Calibration File
The .npz calibration file may or may not be provided. If provided, this section can be safely
ignored. Instructions to generate this and a brief description of the problem follows.

The algorithm requires information on the focal and other lense parameters for both the left and
right cameras and the relative positions of the left and right cameras. This allows for an accurate
projection of matching points into 3D space and thus calculation of fish lengths.

The calibration is done using the calibrate.py file and requires a dataset of 30-40 images of a
checkerboard pattern taken in an underwater environment similar to that where the recordings
take place. The script can be found in the calibration subdirectory of the main repository. The data
for calibration should be stored in a directory containing two subdirectories labelled “left“ and
“right“. The default directory location for the source directory is a subdirectory of calibration
called “calibration images“. This can be modified by editing the SOURCE variable in the
calibrate.py script. Similarly, the default checkerboard pattern is (6, 8). This pattern refers to the
number of points where four squares meet and, in this case, refers to a checkerboard 7 squares
in height and 9 in width. Once run, the script will generate a calibrations file which can be stored
in the config subdirectory “stereo cam“.

Figure 17: One example of recorded checkerboard pattern.

4. Improved Performance statistics to Identify Different Species on
Jetson Orin Nano

4.1 Jetson Orin Nano
To create an instance segmentation model that can be utilised in a fishery environment, we
require portable hardware for accessible deployment on aquatic vessels and powerful enough to
efficiently run real-time computationally expensive formulations. As such, the MMDetection
toolbox will be set up on the Jetson Orin Nano 8GB Developer Kit, a micro-computer and toolkit
purpose-built for running artificial intelligence-based code, boasting seventy trillion operations
per second [7]. Its compact build maximises cost-effectiveness by keeping running costs low and
outperforming general-purpose computers in its price range. With 8GB of dedicated memory as
well as a dedicated graphics processing unit, the Jetson Orin Nano leverages NVIDIA’s CUDA
architecture for GPUaccelerated tasks by fostering communication between the memory and
GPU [8]. In addition to functionality such as mixed precision training provided by tensor cores, it
provides a flexible product for real-time instance segmentation.

The Jetson Orin Nano 8GB developer kit is equipped with a micro-SD card slot for system
image insertion alongside an Ampere architecture GPU, holding 1024 cores and 32 tensor cores
paired with a 6-core Arm Cortex-A78AE v8.2 64-bit CPU with 1.5MB L2 + 4MB L3 cache. This

79

makes it ideally suited for deep-learning tasks for its GPU-acceleration technology and tensor

cores for optimising performance.
With support for camera integration, the Jetson comes equipped with four 3.2 Gen2 USB Type-

A Connectors and a USB Type-C Connector. Additionally, the Jetson allows two power modes, the
seven-watt and fifteen-watt, making it adjustable for purpose and lightweight. In an energy-
dependent environment of fishing vessels [4], the utility of lower power allows for longer voyages
and, thus, bigger yields. Watt usage can be adjusted based on catch size and does not cost any
pipeline backlogs. The Jetson’s already low power requirements, with laptops averaging between
thirty to seventy watts, make it a cost-efficient addition. However, special care will be required in
deploying the model in marine spaces, as the Jetson is not waterproof; however, with solutions
that can enclose the device inside waterproof material, assuming logical planning will not pose
significant deployment issues.

4.1.1 CUDA
Utilising MMDetection models efficiently requires using both the GPU and the CPU. Without
frameworks that can integrate cohesion between both components, the CPU cannot perform the
bulk of calculations. The reasoning comes from CPU architecture, which is designed for flexibility
over pure performance; it is the CPU’s job to interact with system components, and therefore, it
is integrated with control-flow methods to handle complex decision-making processes. This is
unlike the GPU, which specialises in parallel executions of singular operations. By generating
thousands of lightweight threads instead of the CPU, called CUDA threads, the GPU is designed
for raw performance, making it a superior option for arithmetic operations. Combining both
benefits requires the CPU’s efficient use of GPU resources; thus, NVIDIA developed a solution
called CUDA. By utilising GPU bound functions for execution called kernels, CUDA allows for
efficient execution of code on the GPU; therefore, leveraging CUDA functionality on the Jetson
Orin Nano will greatly benefit model FPS and test efficiency [2].

4.1.2 Jetson Orin Nano Use Cases
The Jetson Orin Nano and its NVIDIA counterparts have been a stable part of edge processing
methodology. Recent research has utilised these tools for various endeavours that would benefit
from on-site development; drone video feeds for research into autonomous drone movements
allowed for a transition to real-time autonomous in-flight capabilities [3]. Projects related to
critical operations, such as onboard guidance systems, have been established. With research
that simulates space flight powered by the NVIDIA Jetson Nano, reinforcement learning was
utilised for the powered descent problem, where thrusters look to assist in the safe landing
procedure of spacecraft. Results have showcased positive performance by the agent and another
exciting way of utilising NVIDIA Jetson architecture [11].

Autonomous on-site research is extended to driving capabilities, with the lightweight nature
of Jetson architecture being utilised for real-time model adaptation during training [5]:
showcasing positive results in a semi-supervised environment with a 92.19% accuracy in testing.
While the Jetson’s utility comes from its lightweight characteristics, research into CAV
(connected autonomous vehicles) [1] has showcased that intelligent use of these devices can be
cheap alternatives to solutions requiring powerful performance. XTENTH-CAR is an open-source
solution to expensive CAV research featuring a stereo camera and 2D LiDAR with ROS (Robot
Operating System) utility and tools. Simulating natural environments on a tenth scale on the

80

NVIDIA Jetson AGX Orin allows for direct applicability while saving costs and preventing

development complexity.
The Jetson Orin Nano has been used in healthcare as an inexpensive research method. As is

the case with the research addressing home-related fall incidents, the project by Yuanpeng Wang
and their collaborators [10] looks to address such a problem that mainly affects the elderly. An
extended approach, utilising the base of YOLOv5s architecture, was used to create a lighter and
superior model for detecting images of fallen versus standing individuals. Additional research has
looked into remote photoplethysmography with the Jetson AGX Orin related to non-contact heart
rate detection. By utilising the relationship between heart rate and blood pulsation, which
produces signals that can be recovered, the Jetson device efficiently utilised this information
based on a facial feature dataset [6].

4.1.3 Software and Hardware Requirements
We first need to attach system memory to an SD Card to use the Jetson Orin Nano. The Jetson is
compatible with Linux, which will be utilised with the Ubuntu version 20.04 as the operating
system. Before utilising the Jetson, we must flash the necessary software using the NVIDIA SDK
Manager. This will performed by using a separate native Linux machine and downloading the SDK
manager on there. After installation, the Jetson requires a consistent power source and an
external monitor, mouse and keyboard plugged into it. The Jetson powers automatically upon
receiving power and will be usable with the Linux 20.04 Ubuntu operating system.

4.2 Improved performance statistics to identify commercial fish species
To access the performance to identify commercial fish species, both quantitative and qualitative
evaluation are carried out in the following.

4.2.1 Quantitative Evaluation on Jetson Orin Nano
This section provides the instance segmentation results of fish detection and species
identification. All experiments are evaluated on our previous built commercial fish species
dataset. To quantitatively evaluate the results of fish detection, segmentation, and species
identification, average precision (AP) is used to assess the performance.

We compare the performance between our used method with other state-ofthe-art methods
on the tasks of fish detection and segmentation, respectively. The quantitative comparison of fish
detection is summarised in Table 2 with regard to . We found that, for
the overall performance, our used method outperforms other state-of-the-art methods for both
fish detection and segmentation. Our proposed method can significantly improve instance
segmentation performance in terms of , and

. More specifically, our method can reach 75.5% of AP for object detection (bbox) and
76.2% of AP for semantic segmentation (segm). For AP50, our method provides the best
performance which are 93.8% for bbox and 93.9% for segm. For AP75, our method also delivers
the best results for bbox and segm, which are 78.1% and 85.8%, respectively.

Table 2: Average Precision on Jetson Orin Nano (APsegm is the AP of segmentation and APbb is the
AP of bounding box).

81

4.2.2 Qualitative Evaluation
The qualitative results of instance segmentation are illustrated in Fig. 6-12, where left images are
the raw images and right images are our used model identified fish species. In order to further
illustrate the performance of our used model, we provide compelling visual results in these
figures. From Fig. 6-12, our used method demonstrates good performance in providing good
segmentation maps and more complete objects along with accurate bounding boxes.

Figure 18: Cod Identification

Figure 19: Haddock Identification

82

Figure 20: Prawn Identification

Figure 21: Whiting Identification

Figure 22: Saithe Identification

83

Figure 23: Flatfish Identification

Figure 24: Monkfish Identification

5. Fish Sizing Improvements
In order to improve accuracy and confidence in the sizing methodology, we describe and pursue
several avenues of investigation.

5.1 Background
The model used in sizing is the standard fisheye model used in OpenCV.45 In this model, each lens
has two properties:

• Camera Matrix: Which looks like this:

Where fx and fy is the focal length of the lens and cx and cy are the optical centres.

• Distortion co-efficients: Which looks like this:

d = (k1 k2 p1 p2 k3)

The distortion coefficients are used to model the radial and tangential distortion. The radial and
tangential distortions are expressed by:

x′radial = x(1 + k1r2 + k4 + k3r6) yradial′ = y(1 + k1r2 + k4 + k3r6)

x′′tangential = x + p1xy + p2(r2 + 2x2)

These make up the intrinsic properties of each camera i.e. those pertaining to the hardware itself.
In addition to this are extrinsic properties that need to be used in stereo projection. This is the

relative positions of each camera to align them to a shared reference coordinate system. This
comprises of a rotation matrix, R, and a translation vector, T.

5.1.1 Stereo projection
The steps in the stereo projection process are:

• Gather left and right images

4 Camera Calibration Tutorial
5 OpenCV documentation. See calibrate()

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/db/d58/group__calib3d__fisheye.html

84

• Locate matching points on each image

• Undistort the images to correct for lens properties

• Project these points into 3D space using the R and T variables.

The last is not an output of the calibration process using checkerboards described elsewhere in
this documentation.

Figure 25: Radial and Tangential Distortion

Figure 26: Radial distortion types

5.1.2 Notes
fx and fy should be equal as they are calculated using pixel size and density. If pixels are the same
size in x and y dimensions, these should be equal. cx and cy are the position of the focal centre.
This should be approximately the centre of the image in pixel coordinates. Denoting LM and RM
as the matrices for the left and right cameras, we have:

And:

85

The centre of the image in each case would be (1024, 768) pixels. The distortion properties are:

ldist = (−0.317,0.159,−0.00135,0.0000652,−0.0516)
rdist = (−0.302,0.132,−0.00110,−0.000344,−0.0341)

The left and right matrices show a difference of 3.15 and 1.13 pixels in fx and fy, which is
presumably acceptable. There is more of a difference between the focal lengths between the left
and right lenses. It is not known if these should be the same, or how close these should be. The
current difference is 30 pixels.

The rotation and translation properties are:

And:

5.2 Fish Sizing Results

5.2.1 Stereoscopy
Stereoscopy is utilised to produce the final estimation of fish length in the third dimension. To
allow this calculation, two cameras are placed defined as the left and right cameras. Both
cameras produce images of fish that are fed into our AI model. Fish sizing can only occur when
the same fish is detected on an image in both cameras, otherwise the script produces no result.

When a fish is detected on both sides, the instance segmentation model produces its
segmentation mask over the fish. This mask is then extracted to produce a contour (the outline)
for each mask by taking a uniform amount of points to avoid bias. We form a two-dimensional
ellipse that represents the fish by using the general form, accounting for ellipse rotation:

Ax2 + Bxy + Cy2 + Dx + Ey − 1 = 0

Figure 27: Fish Image result produced by Smart Trawl with ellipses defining the fish.

86

This ellipse representation and calculation is performed by a function in skimage, that
requires 3 inputs:

1. The centre of the object, defined by (xc,yc)

2. The major and minor lengths from the centre of the object, relating to the head and tale, defined
by (a,b)

3. Theta - the rotation of the ellipse.

Each fish instance is paired to its counterpart in both cameras, where image shifting is utilised
to ensure the pairings are set appropriately.

5.2.2 Demos of fish Sizing
One limitation of the current dataset is that we have no ground truth for the size of fish. Although
we can use the stereo images from left and right cameras to give the predictions of fish size, it is
not straightforward to know who accurate they are. Therefore, we use the common sense to
demonstrate the performance of fish sizing. For example, the predicted size of the cod in Fig. 16
is 63.988 cm which matches the common sense of a cod. Moreover, the predicted size of the
whiting in Fig. 17 is 25.2 cm. The predicted size of the haddock in Fig. 18 is 29.32 cm. The
predicted size of the monkfish in Fig. 19 is 43.636 cm. The predicted size of the prawn in Fig. 20 is
7.932 cm. The predicted size of the flatfish in Fig. 21 is 34.716 cm. The predicted sizes of the cod
(63.988 cm), the whiting (25.2 cm), the haddock (29.32 cm), monkfish (43.636 cm), prawn (7.932
cm), and flatfish (34.716 cm) match with common sense as well.

In addition, we also test the performance of fish sizing when there are more than one type of
fish as shown in Fig. 22. The predicted sizes of the whiting and haddock in Fig. 17 are 31.82 cm
and 31.8 cm respectively. These predicted sizes of whiting and haddock align with common sense
as well.

Figure 28 Cod

87

Figure 29: Whiting

Figure 30: Haddock

Figure 31: Monkfish

Figure 32: Prawn

88

Figure 33: Flatfish

Figure 34: Haddock and Whiting

References
[1] XTENTH-CAR: A Proportionally Scaled Experimental Vehicle Platform for Connected Autonomy and

All-Terrain Research, volume Volume 6: Dynamics, Vibration, and Control of ASME International

Mechanical Engineering Congress and Exposition, 10 2023.

[2] Toru Baji. GPU: the biggest key processor for AI and parallel processing. In Kiwamu Takehisa,
editor, Photomask Japan 2017: XXIV Symposium on Photomask and Next-Generation Lithography

Mask Technology, volume 10454, page 1045406. International Society for Optics and Photonics,
SPIE, 2017.

[3] Mark Barnell, Courtney Raymond, Steven Smiley, Darrek Isereau, and Daniel Brown. Ultra low-
power deep learning applications at the edge with jetson orin agx hardware. In 2022 IEEE High

Performance Extreme Computing Conference (HPEC), pages 1–4, 2022.

[4] Oihane C. Basurko, Gorka Gabin˜a, and Zigor Uriondo. Energy performance of fishing vessels and
potential savings. Journal of Cleaner Production, 54:30–40, 2013.

[5] Kshitij Bhardwaj, Zishen Wan, Arijit Raychowdhury, and Ryan Goldhahn. Real-time fully
unsupervised domain adaptation for lane detection in autonomous driving. In 2023 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1–2, April 2023.

[6] Jianwei Li, Zitong Yu, and Jingang Shi. Learning motion-robust remote photoplethysmography
through arbitrary resolution videos. Proceedings of the AAAI Conference on Artificial Intelligence,
37(1):1334–1342, Jun. 2023.

[7] Abu Bakar Aakif Muhammad, Adli Aulia Fattah Harahap, Angelita Cindi Viani, Christofer, Ester
Vinia, Evans Hebert, Fauzan Valdera, Felix Yaman Kusuma, Gemilang Bagas Ramadhani, Glene

89

Felix, Hansel Matthew, Miftahul Khoir Shilahul, Muhammad Akbar Attalah, Muhammad Gavin
Dirgantara, Muhammad Hurricane, Muhammad Miftah Faridh, Nathaniel Faustine, Ones
Sanjerico, Prajna, Pratama P. Rachmat, Reynard Henderson, Ricad Ragapatri, Rizky Rivaldi,
Valerie Olive Suryono, Vincent Brendli, and Virdian Harun Prayoga. RoboBoat 2021: Technical
Design Report. Technical report, Universitas Indonesia, 2021.

[8] Fred Oh. What is cuda? https://blogs.nvidia.com/blog/ what-is-cuda-2/, September 2012.
Accessed: [insert date you accessed the site here].

[9] OpenMMLab. Mmdetection: Openmmlab detection toolbox and benchmark.
https://github.com/open-mmlab/mmdetection, 2023. Accessed: 2024-04-04.

[10] Yuanpeng Wang, Zhaozhan Chi, Meng Liu, Guangxian Li, and Songlin Ding. High-performance
lightweight fall detection with an improved yolov5s algorithm. Machines, 11(8), 2023.

[11] Callum Wilson and Annalisa Riccardi. Enabling intelligent onboard guidance, navigation, and
control using reinforcement learning on near-term flight hardware. Acta Astronautica, 199:374–
385, 2022.

https://blogs.nvidia.com/blog/what-is-cuda-2/
https://blogs.nvidia.com/blog/what-is-cuda-2/
https://blogs.nvidia.com/blog/what-is-cuda-2/
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection

90

Milestone 6 : Shetland field trials of the full Smartrawl
system integration

17/02/2025

Figure 35 – Image of Smartrawl rigged into trawl net aboard the Atlantia II.

Smartrawl is an in-water discard and bycatch reduction device for demersal fishing trawls,
allowing for a species-specific catch and the release of all unintentional catch back into the
marine environment. The system is comprised of three components; a stereo camera integrated
with AI algorithms to identify and size fish and a patented gate system. The stereo camera,
positioned in the trawl extension obtains high-quality images of fish passing through into the cod
end. Images obtained are then analysed utilising AI algorithms by an onboard computer to
determine fish species and size. Upon classification, a signal is sent to the gate component which
is also positioned in the trawl extension to either catch or release fish. When the camera and AI
system identify non-target species or protected species, a signal is sent to open the gate, allowing
for fish or other marine species to be released back into the marine environment. However, if a
commercially targeted species of legal size is identified, a signal is sent to close the gate, ensuring
fish transverse into the cod end to be landed.

After several months of equipment delays, these trials represent the first time the full integrated
Smartrawl system is trialled at sea. The initial mobilisation of gear occurred on 07/11/2024.

Poor weather conditions over winter resulted in several delays in field testing due to periods of
high winds and swell in Shetland. As result, the trials occurred over a period of 7 non-
consecutive days.

91

Trial objectives:

1. Demonstrate the ease of mobilisation, deployment and recovery of Smartrawl.
2. Test the full integrated Smartrawl system at sea aboard the Atlantia II in Shetland.
3. Prove the programmable nature of the system e.g catch all AI trained species except

cod.
4. Test the updated gate (version 4), demonstrate gate rotation and engagement of latch.

Day 1 - 21/11/2024:
During day one, the gate was lashed in into the extension of the trawl net and due to poor
weather the vessel was only able to get out in harbour area for testing. Here the gate was lashed
in, there was no latch attached with the main objective was to confirm free spinning of the gate.

The team was satisfied with the rigging and floats were configured appropriately. It was attached
in a manner that was free from obstructions however during testing the gate was catching on its
own internal components which prevented it from spinning even at speeds over 5 knots at the
surface.

Figure 36 – Image of Smartrawl gate lashed into net extension.

92

At the end of day one, stereo camera tank tests were carried out to perform a stereoscopic
calibration of the camera. Post tank test revealed a fare few images than expected.

Figure 37– Paired images from tank test of stereoscopic calibration.

Day 2 - 22/11/2024:
At the start of day 2 the fasteners were re-tensioned and by doing so, the gate got it to spin at the
surface at speeds over 4 knots, however it was spinning inconsistently and the central bearing
appeared to loosen over time.

Nonetheless, it was deployed it at depth with Catchcam system rigged up to monitor the gate.
Review of footage revealed no sign of spinning. It was evident that there was a fundamental
problem with bearing and was then sent back to the National Robotarium for the bearing to be
re engineered out of aluminium.

Day 3 - 28/01/2025:
Due to bad weather on day 3 the modified gate was attached in the trawl and its performance
was assessed in air which appeared to spin more freely than the previous iteration. Due to
weather the improved gate was unable to be tested.

Day 4 - 29/01/2025:
Day 4 was a full day doing hauls with the updated gate.

This was the first time the gate was spinning at depth. The net was shot at 11:13 at 51 fathoms at
position 60 07.215 N, 1 23.978 W with the Catchcam fitted to record the forward area of gate. The
vessel speeds over ground was 2.5 knots and towed for 20 minutes. The gear was then hauled at
51.9 fathoms at position 60 07.335 N, 1 24.263 W.

During this haul a small haddock became stuck in the gate which prevented the free spinning of
the gate for majority of haul.

93

The gear was shot again at 11:13 after clearing obstructions in 50.6 fathoms at position 60
07.604 N, 1 24.138 W at 2.5 knots with the Catchcam fitted as before. The gear was then hauled
at 12:05 in 54.4 fathoms at position 60 06.454 N, 1 24.286 W. The catch comprised of mostly
haddock, skate and plaice.

Day 5 - 31/01/2025:
Day 5 was the first day the fully integrated system was tested. The camera, latch, latch bottle
and wiring was all rigged in securely. The camera and gate was a total of 2.5 meter distance
apart.

It was immediately clear that once latch was installed that the gate paddles were catching on
the hinge for the latch rather than the intended retaining surface. As a result, gate paddles were
cut to provide more clearance. This was a rough field fix as the eccentricity of gate was still a
problem.

First deployment: Shot at 12:21 at 51.3 fathom at 60 08.072 N, 1 24.013 W towed at 2.5 knots
and hauled at 13:06 at 54.6 fathom at 60.06.220 N, 1 24.306 W. The Catchcam was positioned
to view gate. Upon haul both strobes were not flashing, however there was a steady green light
on stereo camera system.

The system was reset but after resetting no strobes flashing at all, it was confirmed at all plugs
and cables were normal and latch housing was switched on.

Initial review of Catchcam footage indicated that gate was in release for entire haul.

A hard reset was attempted by pulling out power plug, however after this it was flashing only
once on deck and stopped, following another hard reset is flashed more consistently so moved
Catchcam forward of stereo camera and shot again (Figure 38).

Figure 38 – Image from Catchcam, with the stereo camera and gate visible.

94

Second deployment: The gate was in catch mode and was shot at 14:16 at 53.1 fathom at 60
06.134 N, 1 24.309 W towed 2.5knots hauled at 15:05 at 59.6 fa at 60 07.156 N, 1 24.006 W

After hauling it was clear that only one strobe was still flashing.

 Day 6 – 05-07/02/2025:
After testing the fully integrated system and reviewing the AI processed images it was evident
that the images were over exposed, resulting in the images to be bright white. There were only
several instances where fish were captured in the images, however due to their close proximity
to the camera.

Troubleshooting and other issues encountered:

Latch battery: Post deployment when attempting to charge it, an error message ‘Voltage invalid’
occurred. The battery was then tested with a multimeter to check the voltage and indicated 4 V
(much too low). With communications with engineers from the National Robotarium is was
clear that the battery had become discharged which caused the battery to be damaged. As a
result the battery could not be re charged due to alterations in the chemical balance inside the
battery. A new battery was promptly ordered and replaced.

Camera and strobe exposure:

In order to fix the overexposed images, the camera parameter file was altered through adjusting
the gain and exposure during bench testing in a dark room. However, after a few hours of testing
the camera parameter file was crashing and caused the camera system to stop working and
stop acquiring images.

The following day, this issue was resolved as an engineer was able to patch into the system to fix
it and alter the gain and exposure settings.

Day 8 (10/02/2025):
Before sea trials, the stereo camera system underwent further tank tests to test the camera
parameters to ensure the gain and exposure setting were correct. The gain was set to 0 and the
exposure to 600. These setting worked well and the colour squares were clear.

Further bench testing of the system was undergone and images analysed to ensure system
functionality before sea deployment.

95

Figure 39 – Paired image from tank test showing all visible colours on colour square.

Another issues encountered when bench testing was overwriting of image files, with the new
images acquired on the bench overriding the current images from tank testing.

Day 9 – 12/-2/2025:
Day 9 was the second day the fully integrated system was tested. Prior to at sea testing the
‘control.csv’ file that is used to program Smartrawl catch species and size was set to catch all
species and their minimum conservation reference size apart from cod, as seen below.

The camera parameter file was set to gain=0, and exposure=600.

A total of three hauls were carried out on Day 9 at Scalloway Deeps as seen in table 3.

96

Table 3 – Haul data from two days at sea 12.02.25 and 14.02.25

Haul 1:

Haul 1 was shot at 10:57 in Scalloway deeps, with the Catch Cam facing the gate and the GoPro
and torch facing the latch. Before deploying the gear, the system was fully booted and strobes
flashing. The gate was set in default release position. Upon recovery the stereo camera strobes
were not flashing and very little was caught (4 fish) which indicates that there was an issues
triggered the latch and hence gate rotation into catch position. Review of the CatchCam footage
revealed no gate rotation and go pro footage documented the latch in the same position
throughout (no movement of latch).

Haul 2:

Haul 2 was shot at 12:58 in South deeps, with CatchCam facing the gate and the GoPro facing
the latch. The gate was again set in release position. There was inconsistencies in the system
boot up, where sometimes the strobes would flash. In order to make sure the system was fully
booted up, the system was rebooted several times. Upon recovery the stereo camera strobes
were not flashing and again very little catch was caught (5 fish) which again was caused by the
latch not engaging and gate not rotating (Figure 40).

97

Figure 40 – Image from Catchcam of gate fixed in release position.

Haul 3:

Haul 3 was shot at 14:33 in the South Deeps, again with the Catchcam facing the gate and the
GoPro facing the latch. However, for this haul the gate was set in default catch position. There
was again inconsistencies with the re boot of the system. Upon recovery, their was only one
strobe flashing, and a increased catch as the latch again was not engaged so the gate remained
in catch position. The catch was mixed with haddock, cod, plaice, whiting, thornback ray, flapper
skate and lemon sole.

Catchcam footage and Gopro footage again revealed that the latch was not triggered and hence
the gate did not rotate.

Post demobilisation, issues were encountered with accessing the stereo camera data, although
the camera was powered on the ethernet connection was not pinging as a result the data was
not accessed and the control file could not be changed.

The following day consisted of communications with engineers from the National Robotarium in
order to try and fix the camera, strobes and data acquisition. All batteries were then charged,
however this did not fix the issues. All troubleshooting that could be done remotely occurred in
an attempt to solve the stereo camera issues, however we were unable fix the above issues.

Day 10 - Feb 14/02/25
Haul 4:

Haul 4 occurred on the 14/02/25 and was shot at 10:17 at Scalloway Deeps. Before deployment
the Catchcam was positioned in front of the stereo camera in order to see if the camera was
functioning, again the GoPro was positioned facing the latch. The gate was set into default
release position.

Due to the camera issues encountered from day 9, we were unsure whether the camera system
would work, so a separate torch was attached to the stereo camera frame to illuminate the
camera frame in case strobes were not working.

Figure 41 – Dive torch rigged to stereo camera frame to ensure illumination in case strobes were
not flashing.

98

Post deployment, the stereo camera system was not flashing, however the latch was
continuously moving even with all gear on deck. It seemed that the system had a bug which
caused the latch the continuously engage. As a result, clear footage was obtained of the latch
engaging and catching the gate paddled (Figure 42 and 43). The CatchCam captured the gate
clearly rotating between catch and release position.

Figure 42– Latch engaged on gate paddle.

Figure 43 – Latch not engaged, allowing gate to rotate.

There was a mixed catch as a result of the latch constantly moving which included plaice,
haddock, cod, whiting and thornback ray.

Haul 5:

Haul 5 occurred on the 14/02/25 and was shot at 11:53 at Scalloway Deeps. The gate was set
into default release position. After the 4th haul, with the latch continuous moving it was decide
not to reset the system, as this will allow for clear footage to be obtained of the gate rotating
between catch and release position. Before deployment the Catchcam was moved in front of

99

the gate in order to see if the gate switch between catch and release position. Again the GoPro
was positioned facing the latch and obtained footage of the latch engaging.

The catch was also mixed including haddock, plaice, flounder, dab, grey gurnard and cuckoo
ray.

During these two hauls, there was no evidence of the stereo camera and strobes operating.
However, due to the camera issues we are unable to view the images acquired. Images will be
reviewed upon system optimisation.

Conclusion:

The Shetland field trials for the full Smartrawl system demonstrated both promising
advancements and significant technical challenges. Despite delays caused by equipment
issues and poor weather conditions, Smartrawl was successfully mobilized and tested the
system in various configurations. However, technical setbacks, such as issues with the gate
rotation, damaged battery, the stereo camera image exposure, and the latch system, hindered
the system's performance during key deployments. These challenges were compounded by
difficulties in data acquisition and the camera and strobe synchronisation.

Nevertheless, the trials also showcased valuable learning experiences, including the
importance of system calibration and the need for ongoing troubleshooting. The issues were
addressed with remote aid from engineers from the National Robotarium, with several fixes,
such as altering the gate design and adjusting camera settings, leading to more effective
results. Despite the obstacles, the trials provided critical insights into the Smartrawl system’s
capabilities and initial limitations during testing, paving the way for further improvements and
optimization in future testing phases. Despite challenges the it was demonstrated how easily
the Smartrawl system can be mobilised and deployed and recovered on a small fishing vessel.
The latch proved to work well, catching the gate paddled and rotating the gate quickly into catch
and release position.

Acknowledgments: Big thank you to Shaun Fraser (Senior Fisheries Scentist UHI), Davis (crew),
Victor Duncan (Skipper).

Published by: Fisheries Innovation & Sustainability (FIS)

This report is available at: https://www.fisorg.uk

Dissemination Statement

This publication may be re-used free of charge in any format or medium. It may only be reused accurately and

not in a misleading context. All material must be acknowledged as FIS copyright and use of it must give the title

of the source publication. Where third party copyright material has been identified, further use of that material

requires permission from the copyright holders concerned.

Disclaimer

The opinions expressed in this report do not necessarily reflect the views of FIS and FIS is not liable for the

accuracy of the information provided or responsible for any use of the content.

Suggested Citation:

Title:

First published:

© FIS

First published: 2025

Title: SMARTRAWL 5.0 Final Report

Suggested Citation: Ashworth, R., Fernandes, P., Yi, D., Morrison, D., Fraser, S. (2025) SMARTRAWL 5.0 Final
Report. A study commissioned by Fisheries Innovation & Sustainability (FIS) https://fisorg.uk

